

REPORT on DETAILED CONTAMINATION ASSESSMENT

CUMBERLAND NEWSPAPERS REDEVELOPMENT – SITE A 142 – 154 MACQUARIE STREET PARRAMATTA

Prepared for NEWS LIMITED

*Project* 71682 *July* 2010



REPORT on DETAILED CONTAMINATION ASSESSMENT

CUMBERLAND NEWSPAPERS REDEVELOPMENT – SITE A 142 – 154 MACQUARIE STREET PARRAMATTA

Prepared for NEWS LIMITED

*Project 71682 July 2010* 

Douglas Partners Pty Ltd ABN 75 053 980 117

96 Hermitage Road West Ryde NSW 2114 Australia PO Box 472 West Ryde NSW 1685

 Phone
 (02) 9809 0666

 Fax
 (02) 9809 4095

 sydney@douglaspartners.com.au





# TABLE OF CONTENTS

# Page

| 1.  | INTRODUCTION1                                                                                                                                                                  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.  | SITE DESCRIPTION                                                                                                                                                               |
| 3.  | REGIONAL GEOLOGY                                                                                                                                                               |
| 4.  | SCOPE OF WORKS                                                                                                                                                                 |
| 5.  | SITE HISTORY                                                                                                                                                                   |
|     | 5.1Historical Land Uses55.2Contaminated Land Public Register55.3Aerial Photographs65.4Groundwater Bore Search75.5WorkCover NSW Dangerous Goods Licenses7                       |
| 6.  | SELECTED COMPARATIVE GUIDELINES                                                                                                                                                |
| 7.  | DATA QUALITY OBJECTIVEs                                                                                                                                                        |
| 8.  | FIELD WORK PROCEDURES                                                                                                                                                          |
| 9.  | RESULTS OF ASSESSMENT13                                                                                                                                                        |
|     | 9.1Field Work Results139.2Total Photoionisable Compounds Results149.3Analytical Results for Soil and Groundwater Samples149.4Field and Laboratory Quality Control Procedures14 |
| 10. | DISCUSSION OF RESULTS14                                                                                                                                                        |
|     | 10.1Soil Contamination1410.2Groundwater Contamination1610.3Provisional In Situ Waste Classification16                                                                          |
| 11. | CONCLUSIONS AND RECOMMENDATIONS                                                                                                                                                |
| 12. | LIMITATIONS OF THIS REPORT                                                                                                                                                     |



# APPENDICES

- APPENDIX A Drawings
- APPENDIX B Historical Information
- APPENDIX C Notes Relating to this Report Field Work Results
- APPENDIX D Summary of Analytical Results
- APPENDIX E Detailed Analytical Results
- APPENDIX F QA/QC Information
- APPENDIX G Calibration Certificate for PID



PMO Project 71682 22 July 2010

# REPORT ON DETAILED CONTAMINATION ASSESSMENT CUMBERLAND NEWSPAPERS REDEVELOPMENT – SITE A 142 – 154 MACQUARIE STREET, PARRAMATTA

# 1. INTRODUCTION

This report outlines the results of a detailed contamination assessment undertaken for the proposed redevelopment of a portion of the Cumberland Newspapers site at 142 – 154 Macquarie Street, Parramatta. The work was commissioned by EGO Group, architects, on behalf of News Limited.

The first stage of the redevelopment project (Site A) involves the construction of a four storey commercial building on the northern portion of the Cumberland Newspapers site. Basement levels are not proposed. The development works need to be designed to protect numerous archaeological preservation zones which exist on the site.

Contamination assessment was undertaken to:

- Assess the general levels of contamination resulting from past and present activities on the site;
- Assess the potential for migration of contamination from the site by looking at the leachability of contaminants within the soils and the groundwater regime;
- Assess the suitability of the site for the intended commercial land use; and
- Provide recommendations for remediation works, if required.



The overall approach for contamination assessment included a review of available site records including historical title deed information, the contaminated land public register, historical aerial photographs, licensed groundwater bore records and WorkCover NSW dangerous goods licence information. Following a review of this information, the assessment was continued by drilling boreholes, installing groundwater monitoring wells, subsurface sampling, laboratory analysis and interpretation of the results. Details of the field work and laboratory testing are given in this report, as well as comments on the issues outlined above.

This report has not been prepared specifically for site audit purposes. A geotechnical investigation and acid sulphate soil assessment were undertaken concurrently and are reported separately.

# 2. SITE DESCRIPTION

The Site A development site is located in the northern portion of the Cumberland Newspapers facility and is approximately  $3,200 \text{ m}^2$  in area. The site is relatively flat with surface levels varying between RL 6.7 and RL 7.0. It is bounded by George Street to the north, the Albion Hotel to the east, editorial offices and former printing facilities to the south, and Argus Lane to the west. The Parramatta River is located on the northern side of George Street approximately 70 m from the site.

At the time of the investigation the site was being used as an employee carpark and was generally sealed with asphalt. A small garden and grassed area was located in the central-western section of the carpark. The northern portion of the site is understood to be underlain by footings and artefacts associated with original European colonisation of the area.

Underground storage tanks (USTs) are understood to have been located to the west of the existing printing facility and to the south of the western corner of the proposed development site. These USTs are understood to have stored petroleum and mineral spirits/heating oil and evidence suggests they were decommissioned prior to 2000.



The site is part of Lot 11 DP 790287 in the Parish of St John, County of Cumberland although it appears that it was formerly made up of smaller lots that have since been consolidated. A site location plan is shown on Drawing E1 in Appendix A.

# 3. REGIONAL GEOLOGY

The *Sydney 1:100 000 Geological Series Sheet* indicates that the site is underlain by Ashfield Shale which comprises black to dark grey shale and laminite. A boundary with alluvial and estuarine sediment associated with the Parramatta River is shown to the east of the site,

# 4. SCOPE OF WORKS

The scope of the contamination assessment was as follows:

- Obtain and review site history information including historical title deed information, the contaminated land public register, historical aerial photographs, licensed groundwater bore records and WorkCover NSW dangerous goods licence information;
- Drill ten (10) boreholes to a depth of at least 0.5 m into natural soil or prior refusal. Collect soil samples from the filling and natural material in the bores, and upon signs of obvious contamination;
- Install two (2) groundwater monitoring wells on the site to enable groundwater samples to be collected and depth measurements to be made;
- Screen soil samples with a calibrated photoionisation detector (PID) to assess the presence of volatile organic compounds;
- Conduct laboratory analysis on selected soil samples in a NATA accredited analytical laboratory for the following range of potential contaminants:
  - Priority heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni & Zn);
  - Total Petroleum Hydrocarbons (TPH);



- Monocyclic Aromatic Hydrocarbons (Benzene, Toluene, Ethylbenzene and Xylene BTEX);
- Polycyclic Aromatic Hydrocarbons (PAH);
- o Organochlorine Pesticides (OCP);
- o Organophosphorus Pesticides (OPP);
- Polychlorinated Biphenyls (PCB);
- o Phenols; and
- o Asbestos.
- Conduct leachability testing for selected contaminants in selected soil samples using the Toxicity Characteristics Leaching Procedure (TCLP).
- Conduct laboratory analysis on groundwater samples in a NATA accredited analytical laboratory for the following range of potential contaminants:
  - o Priority heavy metals (As, Cd, Cr, Cu, Pb, Hg, Ni & Zn);
  - o Hardness;
  - Total Petroleum Hydrocarbons (TPH);
  - Monocyclic Aromatic Hydrocarbons (Benzene, Toluene, Ethylbenzene and Xylene BTEX);
  - Polycyclic Aromatic Hydrocarbons (PAH);
  - Volatile Organic Compounds (VOC);
  - o Organochlorine Pesticides (OCP);
  - o Organophosphorus Pesticides (OPP);
  - o Polychlorinated Biphenyls (PCB); and
  - o Phenols.
- Provide a contamination assessment report which comments on the recorded levels of contamination in the soils on the site, the potential for contamination migration, the suitability of the site for the proposed development, and recommended follow up action;
- Provide provisional in situ waste classification advice; and



• Store remaining soil and groundwater samples not analysed for a period of one month pending the need for further analysis.

# 5. SITE HISTORY

# 5.1 Historical Land Uses

The title deed records indicate that the lots which now comprise the northern portion of Lot 11 DP 790287 (i.e. the Site A development area) were owned by various individuals from 1909. Cumberland Newspapers Limited (a News Limited company) took ownership of these lots over the period 1955 to 1969. The title deeds provide little information as to the former land uses but it is assumed that the lots were used for residential purposes until they became the commercial facility that exists on site today.

The lots to the south of the Site A development area were also owned by various individuals until Cumberland Newspapers Limited took ownership between 1951 and 1956. The land uses on these sites where improvements were made are likely to have been similar to those lots along the George Street frontage.

Extracts from the title deed records are provided in Appendix B.

# 5.2 Contaminated Land Public Register

A search undertaken on 2 July 2010 indicated that the development site is not on the Public Register of Notices issued under the *Contaminated Land Management Act 1997*. The search results for the Parramatta City Council area are attached in Appendix B as confirmation of this status.



# 5.3 Aerial Photographs

A review of available aerial photographs from 1928, 1930, 1951, 1961, 1970, 1982, 1986, 1991, 2002 and 2008 was undertaken to evaluate the land-use patterns on the site. Site details observed in the aerial photographs are provided in Table 1.

| Year | Details                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1928 | Numerous small building along the George Street frontage. A few small outbuildings at the rear of these lots. The large block to the south of Site A appears vacant apart from a small building along the Argus Lane frontage. Buildings in the south-eastern portion of the site between the Albion Hotel and Macguarie Street fronting Macarthur Street.                                   |  |  |
| 1930 | No change since 1928.                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 1951 | A clearer photograph showing closely spaced buildings (residential?) along George Street. No change to the large lot to the south of Site A. Several buildings in the south-eastern corner of the site have been demolished.                                                                                                                                                                 |  |  |
| 1961 | No change to the northern area of the site. A large commercial building covers<br>the majority of the area to the south. The existing buildings in the south-eastern<br>corner have now all been demolished. A smaller commercial building is located<br>to the south of the Albion Hotel and an open hardstand area exists at the<br>intersection of Macquarie Street and Macarthur Street. |  |  |
| 1970 | Three small buildings remain in the north-western corner of the site but the other former buildings along George Street have been demolished. This area is now used as a carpark. No change on the remainder of the site.                                                                                                                                                                    |  |  |
| 1982 | Only two buildings remain in the north-western corner of the site. No change on the remainder of the site.                                                                                                                                                                                                                                                                                   |  |  |
| 1986 | Only one building remains in the north-western corner of the site. No change on the remainder of the site.                                                                                                                                                                                                                                                                                   |  |  |
| 1991 | No change to the buildings on the site. The roof of the large commercial building<br>fronting Macquarie Street appears to have been replaced since the previous<br>photo.                                                                                                                                                                                                                    |  |  |
| 2002 | The small building in the north-western corner of the site has been demolished.<br>No change on the remainder of the site.                                                                                                                                                                                                                                                                   |  |  |
| 2008 | The site appears as it did at the time of the field work for the current assessment.                                                                                                                                                                                                                                                                                                         |  |  |

| Table | 1 – Site | Details | from | Aerial | Photographs  | 2 |
|-------|----------|---------|------|--------|--------------|---|
| labic |          | Details |      | Acriai | i notographa | , |

Scanned images of the aerial photographs are provided in Appendix B.



# 5.4 Groundwater Bore Search

A search of licensed groundwater bores in the Parramatta area indicated that licensed groundwater wells are not located within the development site. The nearest well is located near the intersection of Hassall Street and Gregory Place about 500 m to the south-east. The search information is attached in Appendix B.

# 5.5 WorkCover NSW Dangerous Goods Licenses

An application for information on dangerous goods licenses issued for the development site was made to WorkCover NSW on 31 March 2010. The information supplied by WorkCover NSW indicates that three USTs were located on the site. The tank details are as follows:

- 20,000 L underground petroleum storage tank;
- 5,000 L underground petroleum storage tank; and
- 5,000 L underground heating oil storage tank (which was possibly originally used to store kerosene or similar mineral spirit).

A sketch shows the tanks as being in the carpark area to the west of the former printing building located to the south-west of the Site A development area (i.e. not on the site of the current assessment but up-gradient with respect to probable groundwater flow direction). Correspondence from Cumberland Newspapers to WorkCover NSW on 7 November 2000 indicates that the three tanks had been decommissioned "to the Australian Standards" although it is unclear whether the tanks were removed or filled with inert material. The state of the tanks at the time of decommission is also unclear.

The information obtained from WorkCover NSW is included in Appendix B.



# 6. SELECTED COMPARATIVE GUIDELINES

The proposed development is for commercial purposes. The relevant soil assessment criteria for the site are the Health-based Investigation Levels (Column 4) as specified in *Contaminated Sites: Guidelines for the NSW Site Auditor Scheme,* (Department of Environment and Conservation NSW, 2006). The provisional Phytotoxicity-based Investigation Levels (Column 5) are considered irrelevant for the site.

Assessment criteria for petroleum hydrocarbons are the Threshold Concentration for Sensitive Site Land Use – Soils, specified in *Contaminated Sites: Guidelines for Assessing Service Station Sites,* (NSW EPA, 1994).

Assessment criteria for groundwater contamination are the 95% level of protection of species values for freshwater outlined in *Australian and New Zealand Guidelines for Fresh and Marine Water Quality 2000* produced by the Australian and New Zealand Environment and Conservation Council (ANZECC).

The site assessment criteria are shown in the relevant tables in Appendix D.

# 7. DATA QUALITY OBJECTIVES

The investigation procedures have been devised in general accordance with the seven-step data quality objective (DQO) process outlined in Australian Standard AS 4482.1 – 2005 *Guide to the investigation and sampling of sites with potentially contaminated soil – Part 1: Non-volatile and semi-volatile compounds.* The DQO process is outlined below.

### (a) State the Problem

The site is to be redeveloped for commercial purposes. The aim of the current assessment is to provide an indication of the suitability of the site for the proposed development and, on the basis of the investigation findings, provide advice on what future works may be required.



# (b) Identify the Decision

Ten boreholes were drilled to collect soil samples from the site. The number of sampling points was determined from *Contaminated Sites: Sampling Design Guidelines* (EPA NSW, 1995) which suggests a minimum of ten sampling points for a site with an area of 3,200 m<sup>2</sup>. The sampling points were set out to cover the site in a rough grid pattern, with recognition of the fact that the south-western portion of the site has the potential to be contaminated with hydrocarbons from the former USTs.

One groundwater monitoring well was installed near the south-western corner of the site (near the former USTs) and one monitoring well was installed in the north-eastern corner of the site which appears to be the down-gradient groundwater area on the site.

The suite of contaminants tested is outlined in Section 4 of this report. This suite of contaminants was devised to detect the presence of heavy metals, hydrocarbons, polychlorinated biphenyls and phenol which could be present due to the activities on the site. Analysis for pesticides was undertaken due to the presence of filling and the possible use of such chemicals on the site in the past. Analysis for asbestos was undertaken due to the presence of filling and the possibility of asbestos debris remaining on the site from previous demolition activities.

The comparative guidelines were selected on the basis of the proposed land use and are outlined in Section 6 of this report.

### (c) Identify Inputs to the Decision

The primary inputs in assessing the presence of contamination on the site are:

- Areas of potential contamination based on historical uses of the site;
- Field observations;
- Laboratory test results; and
- Published guidelines appropriate for the proposed commercial land use.



# (d) Define the Boundary of the Assessment

The boundary of the assessment is defined as the northern portion of Lot 11 DP 790287 in the Parish of St John, County of Cumberland which forms the Site A development area as shown on Drawing E1 in Appendix A.

### (e) Develop a Decision Rule

The decision rule is based on the following documents:

- Department of Environment and Climate Change (2006) Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (Column 4 – Health-based investigation levels for commercial and industrial premises (NEHF F)); and
- NSW EPA (1994) Contaminated Sites: Guidelines for Assessing Service Station Sites.
- ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

# (f) Specify Acceptable Limits on Decision Errors

Appropriate quality assurance and quality control measures were incorporated into the sampling and testing regime to ensure the quality of the assessment data. These measures are outlined in Appendix F of this report.

# (g) Optimise the Design for Obtaining Data

The sampling locations were selected to provide appropriate coverage of the site including the south-western corner which is closest to the location of the former USTs. The sampling points are shown in Drawing E1 in Appendix A. The procedures for collecting samples were to be in general accordance with DECCW guidelines and industry best-practice. A NATA accredited analytical laboratory was used to analyse soil and groundwater samples.

A number of data quality indicators (DQIs) were established to verify that the quality of the investigation data is acceptable. Table 2 summarises how the DQIs are assessed.



| Data Quality Indicator                           | Evaluation Procedure                                                                                                                                                                                                                 |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Documentation completeness                       | Completion of field and laboratory documentation including chain of custody                                                                                                                                                          |
|                                                  | sheets and borehole logs.                                                                                                                                                                                                            |
| Data completeness                                | A review of site history to support the current analytical regime. Analysis of appropriate contaminants. Analysis of appropriate soil horizons. Analysis of groundwater samples. Analysis of appropriate samples for QA/QC purposes. |
| Data comparability                               | Use of NATA accredited analytical methods. Use of consistent sampling techniques. Use of disposable/decontaminated sampling equipment. Use of suitable field sample storage techniques.                                              |
| Data representativeness                          | Sampling from locations spaced on accessible areas on the site in order to obtain<br>an objective measure of contamination on the site.                                                                                              |
| Precision and accuracy for sampling and analysis | Use of NATA accredited analytical methods. Achievement of suitable results in QA/QC criteria                                                                                                                                         |

### Table 2 – Data Quality Indicators and Evaluation Procedures

The DQIs for sampling and analysis were achieved and the quality of the data satisfactorily meets the objectives of the current assessment.

# 8. FIELD WORK PROCEDURES

The field work included drilling ten boreholes (BH1 to BH10) to depths of 1.5 m to 12.75 m using a truck-mounted Scout drilling rig. The bores were commenced using solid flight augers to drill through the overburden filling and soils. Samples were collected from the tip of the auger at regular depth intervals. The bores were then continued for geotechnical investigation and acid sulphate soil assessment purposes.

Bores BH4 and BH5 were converted into groundwater monitoring wells at the completion of drilling. This involved backfilling the bores to an appropriate depth, installation of Class 18 uPVC screen across the apparent groundwater surface and uPVC casing above the screen, installation of a gravel filter-pack around the screen, provision of a bentonite-pellet plug above the filter, backfilling of the cased portion of the well with soil cuttings and installation of a steel gatic-cover flush with the ground surface.

The ground surface levels at the test locations were measured relative to Australian Height Datum (AHD) using an automatic level.

The locations of the boreholes are shown on Drawing E1 in Appendix A.



Soil sampling for contamination assessment purposes was performed in general accordance with the standard sampling procedures outlined in the *DP Field Procedures Manual*. All sampling data were recorded on chain of custody information sheets. The sampling generally included:

- Soil sampling using disposable and/or decontaminated equipment;
- Placement of samples into laboratory prepared jars and immediate capping;
- Labelling of sample containers with individual and unique markings including project number, sample location, sample depth and date of sampling; and
- Storage of sample containers in a cooled, insulated and sealed container for transport to the laboratory.

Groundwater sampling was performed in general accordance with the standard sampling procedures outlined in the *DP Field Procedures Manual*. All sampling data were recorded on chain of custody information sheets. The sampling generally included:

- Groundwater sampling using a low-flow pump that had been decontaminated using a phosphate-free detergent and demineralised water;
- Placement of samples into laboratory prepared and preserved bottles and immediate capping;
- Labelling of sample containers with individual and unique markings including project number, sample location and date of sampling; and
- Storage of sample containers in a cooled, insulated and sealed container for transport to the laboratory.



# 9. RESULTS OF ASSESSMENT

# 9.1 Field Work Results

The subsurface conditions encountered in the boreholes are presented in the borehole logs in Appendix C, together with notes defining descriptive terms and classification methods. The boreholes encountered:

- FILLING asphalt and roadbase gravel pavement materials to depths of 0.12 m to 0.75 m. Sand and clayey sand with brick, ash, grass, metal, glass, ceramics and clay to depths of 0.6 m to 1.75 m. Filling was not encountered below the pavement materials in bores BH4, BH6 and BH7.
- **ALLUVIUM** loose, medium dense and dense sand and clayey sand, and stiff and very stiff sandy clay and clay to depths of 5.0 m to 8.5 m.
- **RESIDUAL SOIL** stiff, very stiff and hard silty clay and shaly clay with some ironstone bands to depths of 8.5 m to 9.7 m in bores BH5, BH7 and BH8.
- **BEDROCK** extremely low and very low strength laminite/siltstone from depths of 5.0 m to 9.7 m, grading to medium, high and very high strength laminite to the base of the bores at 8.8 m to 12.75 m depth.

Free groundwater was observed in the eight deeper bores between RL 0.9 and RL 3.6. Free groundwater was measured in the groundwater monitoring wells installed in BH4 and BH5 at RL 1.6 and RL 2.7 respectively, approximately 1 month after installation. Inferred contours indicating the apparent groundwater surface based on the levels in the wells and the levels at which groundwater was encountered in the other bores during drilling is shown in Drawing E2 in Appendix A.

Groundwater appears to flow in an easterly and north-easterly direction.



# 9.2 Total Photoionisable Compounds Results

Replicate soil samples collected from the boreholes were stored under ambient temperatures before screening for Total Photoionisable Compounds (TOPIC) using a calibrated Photoionisation Detector (PID). The results of the screening are shown on the borehole logs in Appendix C. The PID readings were all very low.

A calibration certificate for the PID is included in Appendix G.

# 9.3 Analytical Results for Soil and Groundwater Samples

Envirolab Services Pty Ltd was commissioned to undertake analysis of the soil and groundwater samples. A tabulated summary of the results of the soil analysis is provided in Table D1 in Appendix D. The results of leachability analysis on selected samples are shown in Table D2 and the results of the water analysis are shown in Table D3, both also included in Appendix D. The detailed analytical results, sample receipts and chain of custody documentation are included in Appendix E.

# 9.4 Field and Laboratory Quality Control Procedures

The field and laboratory QA/QC procedures adopted for the assessment are described in Appendix F.

# 10. DISCUSSION OF RESULTS

# **10.1 Soil Contamination**

Twenty-two (22) soil samples (including two QA/QC replicates) were selectively analysed from ten (10) test locations on the site. Thirteen of these samples were obtained from the filling profile and nine samples from the natural alluvium.



One sample of filling (BH5/1.0 m) had a lead concentration equal to the HIL for commercial land use (1,500 mg/kg). The average lead concentration of all samples of filling tested was 344 mg/kg, the standard deviation was 385 mg/kg (i.e. <50% of the HIL) and the 95% upper confidence limit (UCL) was 621 mg/kg (i.e. below the HIL). The lead concentrations therefore fall within the adopted assessment criteria. All other contaminants identified in the soil samples were well below the HILs adopted for the site.

Leachability testing of the sample from BH5/1.0 m indicated that the leachable concentration of lead was relatively low (0.9 mg/L). The average leachable concentration of lead in five samples tested was 0.2 mg/L. The PAHs were non-leachable.

Selected soil samples tested from the boreholes closest to the former USTs (i.e. BH5 and BH6) exhibited slightly elevated concentrations of PAHs but were still well below the adopted comparative guidelines. TPH and BTEX were not detected in the samples. Leachability testing indicated that the PAHs in the sample from BH5 were non-leachable and it is therefore considered that the source of the PAHs is more likely to be ash in the sample rather than petroleum hydrocarbons. The slightly elevated concentrations of other heavy metals suggest that the source of contamination may be an old battery or other similar inclusion in the filling.

Asbestos was not observed in the boreholes and was not detected in the samples analysed in the laboratory. It should be noted, however, that the filling present on the site did contain building rubble and it is known that former buildings (possibly containing asbestos materials) have been demolished in areas of the site in the past. The commercial buildings to the south of Site A are also likely to contain asbestos, although assessment of these buildings was outside the scope of the current commission. The possibility of the presence of asbestos on the site should therefore not be discounted.

On the basis of the contamination assessment of the soils on the site, it is considered that the site is suitable for the proposed commercial development.



# **10.2** Groundwater Contamination

Groundwater samples were collected from two monitoring wells (GW4 and GW5) installed on the site as part of the current assessment. GW4 was installed in the north-eastern (presumed down-gradient) corner of the site and GW5 was installed close to and notionally down-gradient to the former USTs which are located outside the assessed-site boundary.

The samples contained concentrations of several heavy metals (i.e. Cu, Pb and Zn) above the 95% level of protection of species in freshwater adopted for the site (refer to Table D3 in Appendix D). However, testing indicated that the groundwater was hard to extremely hard (i.e. 139 and 370 mgCaCO<sup>3</sup>/L) and therefore adjustment of the adopted levels is warranted. The heavy metal concentrations were considered acceptable when taking water hardness (hardness modified trigger values or HMTV in Table D3) into account. The concentrations of the other contaminants tested were below the detection limits and adopted assessment criteria. Phase separated hydrocarbons were not observed in either of the groundwater monitoring wells.

Dewatering of the site will not be required for the proposed development. On the basis of the contamination assessment of the groundwater on the site, it is considered that the groundwater quality should not affect the suitability of the site for the proposed development and similarly the risk of off-site migration of contamination is minimal.

# 10.3 Provisional In Situ Waste Classification

The filling was assessed with reference to the *Waste Classification Guidelines* produced by the Department of Environment and Climate Change (DECC, April 2008). The guidelines require waste to be assessed using the following six step process:

- 1. Determine if the waste is Special Waste;
- 2. Determine if the waste is Liquid Waste;
- 3. Determine if the waste has been pre-classified;
- 4. Determine if the waste is Hazardous Waste;
- 5. Undertake chemical assessment and compare results with the specified total and leachable contaminant concentration thresholds; and



6. Determine if the waste is Putrescible.

The laboratory analysis indicated that asbestos was not present in the soil samples tested. The soil samples did not contain clinical waste or tyres and therefore the soils on the site cannot be classified as Special Waste.

The samples analysed were not in liquid form and therefore could not be described as Liquid Waste.

The DECC has pre-classified glass, plastic, rubber, bricks, concrete, building and demolition waste, and asphalt waste as general solid waste (non-putrescible). Although several samples contained inclusions of some of these materials, they were generally within a soil matrix and therefore further assessment was warranted.

The thirteen samples of filling analysed (Table D1 in Appendix D) did not possess any obvious hazardous characteristics and could not be described as hazardous waste prior to chemical analysis. All samples analysed were assessed on a visual and tactile basis as being incapable of significant biological transformation and are therefore considered to be non-putrescible.

The total concentrations in the samples tested were compared to the threshold criteria provided in the waste classification guidelines. Several samples had elevated total concentrations of lead, nickel and/or PAHs and therefore leachability analysis was undertaken on selected samples (Table D2 in Appendix D). The samples of filling tested could be provisionally classified as *General Solid Waste (non-putrescible)* based on both the total and leachable contaminant concentrations.

The underlying soils and bedrock may be able to be described as virgin excavated natural material (VENM) upon excavation if the materials are not mixed with filling or other contaminating substances. The majority of spoil on the site is expected to be the result of piling operations in which mixing of filling and natural materials is somewhat inevitable. It is therefore recommended that all waste should be disposed of as *General Solid Waste (non-putrescible)* at a landfill facility that is licensed to receive this category of waste.



# 11. CONCLUSIONS AND RECOMMENDATIONS

The site history information obtained during the contamination assessment indicated several USTs were formerly located to the south-west of and outside the Site A area. Numerous buildings have been demolished on the site in the past which also indicates the possibility of asbestos being present. No other indications of potentially contaminating activities were obtained from historical information.

The twenty-two soil samples analysed from the ten test locations exhibited contaminant concentrations within the adopted assessment criteria for the site. Asbestos was not observed in the boreholes nor detected in the laboratory samples analysed, although the possibility of asbestos being present on the site should not be discounted. On the basis of the contamination assessment, the soils on the site are considered suitable for the proposed development.

Groundwater samples were collected from two monitoring wells on the site and analysed for a range of potential contaminants. The samples contained concentrations of copper, lead and zinc above the 95% level of protection of freshwater species. However, the samples also exhibited considerable hardness and the metal concentrations are considered acceptable when the trigger values are adjusted for hardness. On the basis of the contamination assessment, the groundwater quality should not affect the suitability of the site for the proposed development, or pose a significant risk to the off-site environment.

The filling on the site has been provisionally classified as General Solid Waste (non-putrescible) in accordance with current waste classification guidelines. Although the underlying materials could possibly be described as VENM if assessed during construction, mixing of the filling and soils during piling works is inevitable and all material should therefore be disposed of at a landfill facility licensed to receive General Solid Waste (non-putrescible).



### 12. LIMITATIONS OF THIS REPORT

The scope of the site assessment activities and consulting services performed by DP were limited to those outlined in our proposal dated 15 March 2010 which was accepted by News Limited.

DPs assessment is based upon the results of a limited site investigation and the restricted program of surface and subsurface sampling, screening and laboratory testing which was undertaken. DP cannot provide unqualified warranties nor assumes any liability for site conditions not observed, or accessible, during the time of the investigations. This includes areas on the site that were inaccessible due to archaeological constraints.

Despite all reasonable care and diligence, the ground conditions encountered and concentrations of contaminants measured may not be representative of conditions between the sample locations. In addition, site characteristics may change at any time in response to variations in natural conditions and other events such as spillages of contaminating substances. These changes may occur subsequent to DPs investigation and assessment.

This report, its associated documentation and the information herein have been prepared solely for the use of News Limited. Any reliance assumed by third parties on this report shall be at such parties' own risk. Any ensuing liability resulting from use of the report by third parties cannot be transferred to DP.

### DOUGLAS PARTNERS PTY LTD

Reviewed by

Peter Oitmaa Senior Associate

J M Nash Principal

# APPENDIX A Drawings



DATE: 16.6.2010

RUD

APPROVED BY:

7/2/2010 1 04 34 PM dwg, Ę 682 P \71682 PA

Harristord House GASWORKS Robin Thomas Rowland Hassall Ø Reserve dia James Ruse

LOCALITY PLAN

# **TEST BORE LOCATION** GW GROUNDWATER MONITORING WELL

| Borehole Locations                   | PROJECT No: | 71682 |  |
|--------------------------------------|-------------|-------|--|
| Cumberland Newspapers Redevelopment  | DRAWING No: | E1    |  |
| 142-154 Macquarie Street, PARRAMATTA | REVISION:   | А     |  |





# **APPENDIX B** Historical Information

ACN: 108 037 029 Ph: 02 9233 1314 Fax: 9233 2878 Service First Registration Pty Ltd Suite 102, Level 1, 64 Castlereagh Street Sydney 2000 PO Box 1539 Sydney 2000 DX 189 Sydney

### Summary of Owners Report

LPMA Sydney **Deeds Branch** 

### Re: - 142 to 154 Macquarie Street, Parramatta

Description: - Lot 11 D.P. 790287

### As regards the part marked (1) on the attached cadastre

| Date of Acquisition<br>and term held | Registered Proprietor(s) & Occupations where available                        | Reference to Title at Acquisition and sale |
|--------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------|
| 21.12.1909<br>(1909 to 1920)         | Theresa Stapleton (Married Woman)                                             | Vol 1745 Fol 183 now Vol 2978 Fol 195      |
| 25.10.1920<br>(1920 to 1970)         | John Thomas Stapleton (Storekeepers Assistant)                                | Vol 2978 Fol 195 now Vol 7340 Fol 242      |
| 21.02.1969<br>(1969 to 1970)         | Douglas Sinclair Harris (Public Accountant)                                   | Vol 7340 Fol 242                           |
| 28.03.1969<br>(1969 to date)         | # Cumberland Newspapers Pty Limited<br>(# Now Cumberland Printers Pty Limited | Vol 7340 Fol 242 now 11/790287             |

# Denotes Current Registered Proprietor

### As regards the part marked (2) on the attached cadastre

| Date of Acquisition<br>and term held | Registered Proprietor(s) & Occupations where available                   | Reference to Title at Acquisition and sale |
|--------------------------------------|--------------------------------------------------------------------------|--------------------------------------------|
| 21.12.1909<br>(1909 to 1920)         | Theresa Stapleton (Married Woman)                                        | Vol 1745 Fol 183 now Vol 2978 Fol 195      |
| 25.10.1920<br>(1920 to 1956)         | John Thomas Stapleton (Storekeepers Assistant)                           | Vol 2978 Fol 195 now Vol 3133 Fol 167      |
| 09.08.1955<br>(1955 to date)         | Cumberland Newspapers Limited<br>(# now Cumberland Printers Pty Limited) | Vol 3133 Fol 167 now 11/790287             |

# Denotes Current Registered Proprietor

#### As regards the part marked (3) on the attached cadastre

| Date of Acquisition<br>and term held | Registered Proprietor(s) & Occupations where available                                                                    | Reference to Title at Acquisition and sale |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 21.12.1909<br>(1909 to 1948)         | Theresa Stapleton (Married Woman)                                                                                         | Vol 1745 Fol 183 Now Vol 3133 Fol 186      |
| 02.07.1948<br>(1948 to 1949)         | John Thomas Stapleton (Estate Agent)<br>Lily Frances Lynch (Married Woman)<br>(Transmission Application not investigated) | Vol 3133 Fol 186                           |
| 18.05.1949<br>(1949 to 1956)         | John Thomas Lynch (Estate Agent)                                                                                          | Vol 3133 Fol 186 now Vol 6124 Fol 97       |
| 10.12.1956<br>(1956 to 1961)         | Fanny Kathleen Manning (Spinster)                                                                                         | Vol 6124 Fol 97 now Vol 7341 Fol 105       |
| 10.11.1960<br>(1960 to 1961)         | Clare Annie Bradbury (Married Woman)<br>(Transmission Application not investigated)                                       | Vol 7341 Fol 105                           |

### Email: grolly1@bigpond.net.au

# Service First Registration Pty Ltd Suite 102, Level 1, 64 Castlereagh Street Sydney 2000 PO Box 1539 Sydney 2000 DX 189 Sydney

### As regards the part marked (3) on the attached cadastre - continued

| Date of Acquisition<br>and term held | Registered Proprietor(s) & Occupations where available                   | Reference to Title at Acquisition and sale |
|--------------------------------------|--------------------------------------------------------------------------|--------------------------------------------|
| 26.12.1961<br>(1961 to 1965)         | Gordon Hugh Fraser (Real Estate Agent)                                   | Vol 7341 Fol 105                           |
| 09.04.1965<br>(1965 to 1969)         | Peter Nicolapoulos (Machinist)<br>Tasia Nicolapoulos (Married Woman)     | Vol 7341 Fol 105                           |
| 04.02.1969<br>(1969 to 1969)         | Douglas Sinclair Harris (Chartered Secretary)                            | Vol 7341 Fol 105                           |
| 06.03.1969<br>(1969 to date)         | Cumberland Newspapers Limited<br>(# now Cumberland Printers Pty Limited) | Vol 7341 Fol 105 now 11/790287             |

# Denotes Current Registered Proprietor

ACN: 108 037 029

Ph: 02 9233 1314

Fax: 9233 2878

### As regards the part marked (4) on the attached cadastre

| Date of Acquisition<br>and term held | Registered Proprietor(s) & Occupations where available                                                                    | Reference to Title at Acquisition and sale |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 21.12.1909<br>(1909 to 1948)         | Theresa Stapleton (Married Woman)                                                                                         | Vol 1745 Fol 183 Now Vol 3133 Fol 186      |
| 02.07.1948<br>(1948 to 1949)         | John Thomas Stapleton (Estate Agent)<br>Lily Frances Lynch (Married Woman)<br>(Transmission Application not investigated) | Vol 3133 Fol 186                           |
| 18.05.1949<br>(1949 to 1955)         | John Thomas Stapleton (Estate Agent)                                                                                      | Vol 3133 Fol 186 now Vol 6124 Fol 97       |
| 09.08.1955<br>(1955 to date)         | Cumberland Newspapers Limited<br>(# now Cumberland Printers Pty Limited)                                                  | Vol 6124 Fol 97 now 11/790287              |

# Denotes Current Registered Proprietor

### As regards the part marked (5) on the attached cadastre

| Date of Acquisition<br>and term held | Registered Proprietor(s) & Occupations where available                                                                    | Reference to Title at Acquisition and sale |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 21.12.1909<br>(1909 to 1948)         | Theresa Stapleton (Married Woman)                                                                                         | Vol 1745 Fol 183 Now Vol 3133 Fol 186      |
| 02.07.1948<br>(1948 to 1949)         | John Thomas Stapleton (Estate Agent)<br>Lily Frances Lynch (Married Woman)<br>(Transmission Application not investigated) | Vol 3133 Fol 186                           |
| 18.05.1949<br>(1949 to 1959)         | Lily Frances Lynch (Married Woman)                                                                                        | Vol 3133 Fol 186 now Vol 6919 Fol 82       |
| 23.01.1958<br>(1958 to 1969)         | Marie Theresa Threlfo (Married Woman)                                                                                     | Vol 6919 Fol 82                            |
| 05.03.1969<br>(1969 to 1969)         | Douglas Sinclair Harris (Chartered Secretary)                                                                             | Vol 6919 Fol 82                            |
| 25.03.1969<br>(1969 to date)         | Cumberland Newspapers Limited<br>(# now Cumberland Printers Pty Limited)                                                  | Vol 6919 Fol 82 now 11/790287              |

# Denotes Current Registered Proprietor

# Service First Registration Pty Ltd Suite 102, Level 1, 64 Castlereagh Street Sydney 2000 PO Box 1539 Sydney 2000 DX 189 Sydney

### As regards the part marked (6) on the attached cadastre

ACN: 108 037 029

Ph: 02 9233 1314

Fax: 9233 2878

| Date of Acquisition<br>and term held | Registered Proprietor(s) & Occupations where available                                                                           | Reference to Title at Acquisition and sale |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 21.12.1909<br>(1909 to 1919)         | Theresa Stapleton (Married Woman)                                                                                                | Vol 1745 Fol 183                           |
| 26.08.1919<br>(1919 to 1922)         | Frank Tasman O'Brien (Clicker)                                                                                                   | Vol 1745 Fol 183 now Vol 2978 Fol 130      |
| 20.09.1922<br>(1922 to 1967)         | Therese Gertrude O'Brien (Widow)<br>(Now Therese Gertrude McGrath, Married Woman)<br>(Transmission Application not investigated) | Vol 2978 Fol 130 now Vol 6934 Fol 231      |
| 09.05.1967<br>(1967 to 1969)         | Periklis Makris (Fitter)<br>Nicky Makris (Married Woman)                                                                         | Vol 6934 Fol 231                           |
| 17.01.1969<br>(1969 to 1969)         | Ross Bingham Shackell (Chartered Accountant)                                                                                     | Vol 6934 Fol 231                           |
| 06.03.1969<br>(1969 to date)         | Cumberland Newspapers Limited<br>(# now Cumberland Printers Pty Limited)                                                         | Vol 6934 Fol 231 now 11/790287             |

# Denotes Current Registered Proprietor

### As regards the part marked (7) on the attached cadastre

| Date of Acquisition<br>and term held | Registered Proprietor(s) & Occupations where available                                                                    | Reference to Title at Acquisition and sale |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 07.08.1928<br>(1928 to 1948)         | Theresa Stapleton (Married Woman)                                                                                         | Book 1504 No. 949 now Vol 4468 Fol 8       |
| 07.02.1948<br>(1948 to 1949)         | John Thomas Stapleton (Estate Agent)<br>Lily Frances Lynch (Married Woman)<br>(Transmission Application not investigated) | Vol 4468 Fol 8                             |
| 18.05.1949<br>(1949 to 1959)         | John Thomas Stapleton (Estate Agent)                                                                                      | Vol 4468 Fol 8 now Vol 6124 Fol 97         |
| 23.12.1959<br>(1959 to date)         | Cumberland Newspapers Limited<br>(# now Cumberland Printers Pty Limited)                                                  | Vol 4468 Fol 8 now 11/790287               |

# Denotes Current Registered Proprietor

### As regards the part marked (8) on the attached cadastre

| Date of Acquisition<br>and term held | Registered Proprietor(s) & Occupations where available                   | Reference to Title at Acquisition and sale |
|--------------------------------------|--------------------------------------------------------------------------|--------------------------------------------|
| 03.02.1928<br>(1928 to 1959)         | John Thomas Stapleton (Estate Agent)                                     | Book 1502 No. 19 now Vol 7340 Fol 243      |
| 23.12.1959<br>(1959 to date)         | Cumberland Newspapers Limited<br>(# now Cumberland Printers Pty Limited) | Vol 7340 Fol 243 now 11/790287             |

# Denotes Current Registered Proprietor

### As regards the part marked (9) on the attached cadastre

| Date of Acquisition<br>and term held | Registered Proprietor(s) & Occupations where available                                                                    | Reference to Title at Acquisition and sale |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 01.12.1920<br>(1920 to 1948)         | Theresa Stapleton (Draper)                                                                                                | Vol 3133 Fol 187 now Vol 4278 Fol 61       |
| 07.02.1948<br>(1948 to 1949)         | John Thomas Stapleton (Estate Agent)<br>Lily Frances Lynch (Married Woman)<br>(Transmission Application not investigated) | Vol 4278 Fol 61                            |

### As regards the part marked (9) on the attached cadastre - continued

| Date of Acquisition<br>and term held | Registered Proprietor(s) & Occupations where available | Reference to Title at Acquisition and sale |
|--------------------------------------|--------------------------------------------------------|--------------------------------------------|
| 18.05.1949                           | Lily Frances Lynch (Married Woman)                     | Vol 4278 Fol 61 norr Vol 6124 Fol 08       |
| (1949 to 1951)                       | Lify Frances Lynch (Martied Wollian)                   | VOI 4278 FOI 01 HOW VOI 0124 FOI 98        |
| 16.05.1951                           | Coorse Vincent Lunch (Cornenter)                       | V-1 (104 E-108 V-1 (280 E-1028             |
| (1951 to 1967)                       | George vincent Lynch (Carpenter)                       | vol 6124 Fol 98 now vol 6380 Fol 238       |
| 14.09.1967                           | Cumberland Newspapers Limited                          | Vol 6280 Eol 228 norm 11 /700287           |
| (1967 to date)                       | (# now Cumberland Printers Pty Limited)                | vol 0360 F01 238 now 11/ /9028/            |

# Denotes Current Registered Proprietor

ACN: 108 037 029

Ph: 02 9233 1314

Fax: 9233 2878

### As regards the part marked (10) on the attached cadastre

| Date of Acquisition<br>and term held | Registered Proprietor(s) & Occupations where available                   | Reference to Title at Acquisition and sale |
|--------------------------------------|--------------------------------------------------------------------------|--------------------------------------------|
| 03.04.1929<br>(1929 to 1933)         | Charles Augustus Mack (Engineer)                                         | Vol 4263 Fol 205                           |
| 07.02.1933<br>(1933 to 1938)         | Permanent Trustee Company of New South Wales Limited                     | Vol 4263 Fol 205                           |
| 16.05.1938<br>(1938 to 1956)         | John Thomas Stapleton (Estate Agent)                                     | Vol 4263 Fol 205 now Vol 4958 Fol 184      |
| 05.04.1956<br>(1956 to date)         | Cumberland Newspapers Limited<br>(# now Cumberland Printers Pty Limited) | Vol 4958 Fol 184 now 11/790287             |

# Denotes Current Registered Proprietor

### As regards the parts marked (11 and 12) on the attached cadastre

| Date of Acquisition<br>and term held                                                           | Registered Proprietor(s) & Occupations where available                   | Reference to Title at Acquisition and sale |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------|
| 03.04.1929<br>(1929 to 1933)                                                                   | Charles Augustus Mack (Engineer)                                         | Vol 4263 Fol 205                           |
| 07.02.1933<br>(1933 to 1938)                                                                   | Permanent Trustee Company of New South Wales Limited                     | Vol 4263 Fol 205                           |
| 16.05.1938<br>(1938 to 1951 as<br>regards parcel 11)<br>(1938 to 1955 as<br>regards parcel 12) | John Thomas Stapleton (Estate Agent)                                     | Vol 4263 Fol 205                           |
| 22.01.1951<br>(1951 to date) as<br>regards parcel 11)                                          | Cumberland Newspapers Limited<br>(# now Cumberland Printers Pty Limited) | Vol 4263 Fol 205 now 11/790287             |
| 09.08.1955<br>(1955 to date as regards<br>parcel 12)                                           | Cumberland Newspapers Limited<br>(# now Cumberland Printers Pty Limited) | Vol 4263 Fol 205 now 11/790287             |

# Denotes Current Registered Proprietor

# Service First Registration Pty Ltd Suite 102, Level 1, 64 Castlereagh Street Sydney 2000 PO Box 1539 Sydney 2000 DX 189 Sydney

### As regards the parts marked (13 & 14) on the attached cadastre

| Date of Acquisition<br>and term held                                                           | Registered Proprietor(s) & Occupations where available                   | Reference to Title at Acquisition and sale |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------|
| 03.04.1929<br>(1929 to 1930)                                                                   | Charles Augustus Mack (Engineer)                                         | Vol 4263 Fol 206                           |
| 15.04.1930<br>(1930 to 1951 as<br>regards parcel 13)<br>(1930 to 1955 as<br>regards parcel 14) | John Thomas Stapleton (Estate Agent)                                     | Vol 4263 Fol 206                           |
| 22.01.1951<br>(1951 to date) as<br>regards parcel 13)                                          | Cumberland Newspapers Limited<br>(# now Cumberland Printers Pty Limited) | Vol 4263 Fol 206 now 11/790287             |
| 09.08.1955<br>(1955 to date as regards<br>parcel 14)                                           | Cumberland Newspapers Limited<br>(# now Cumberland Printers Pty Limited) | Vol 4263 Fol 206 now 11/790287             |

# Denotes Current Registered Proprietor

ACN: 108 037 029

Ph: 02 9233 1314

Fax: 9233 2878

### As regards the parts marked (15 and 16) on the attached cadastre

| Date of Acquisition<br>and term held | Registered Proprietor(s) & Occupations where available | Reference to Title at Acquisition and sale |
|--------------------------------------|--------------------------------------------------------|--------------------------------------------|
| 01.12.1920                           | Theresa Stapleton (Married Woman)                      | Vol 3133 Fol 187                           |
| (1920 to 1929)                       |                                                        |                                            |
| 06.04.1929                           |                                                        |                                            |
| (1930 to 1951 as                     |                                                        |                                            |
| regards parcel 15)                   | John Thomas Stapleton (Estate Agent)                   | Vol 3133 Fol 187 now Vol 4278 Fol 59       |
| (1930 to 1955 as                     |                                                        |                                            |
| regards parcel 16)                   |                                                        |                                            |
| 22.01.1951                           | Cumberland Neuropapers Limited                         |                                            |
| (1951 to date) as                    | (# now Cumberland Printers Pty Limited)                | Vol 4278 Fol 59 now 11/790287              |
| regards parcel 15)                   | (# now Combernand Finners Fty Eminted)                 |                                            |
| 09.08.1955                           | Cumberland Newspapers Limited                          |                                            |
| (1955 to date as regards             | (# now Cumberland Printers Pty Limited)                | Vol 4278 Fol 59 now 11/790287              |
| parcel 16)                           |                                                        |                                            |

# Denotes Current Registered Proprietor

### As regards the parts marked (17) on the attached cadastre

| Date of Acquisition<br>and term held | Registered Proprietor(s) & Occupations where available                                                                           | Reference to Title at Acquisition and sale |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 21.12.1909<br>(1909 to 1919)         | Theresa Stapleton (Married Woman)                                                                                                | Vol 1745 Fol 183                           |
| 26.08.1919<br>(1919 to 1922)         | Frank Tasman O'Brien (Clicker)                                                                                                   | Vol 1745 Fol 183 now Vol 2978 Fol 130      |
| 20.09.1922<br>(1922 to 1951)         | Therese Gertrude O'Brien (Widow)<br>(Now Therese Gertrude McGrath, Married Woman)<br>(Transmission Application not investigated) | Vol 2978 Fol 130                           |
| 01.04.1951<br>(1951 to 1956)         | John Thomas Stapleton (Estate Agent)                                                                                             | Vol 2978 Fol 130 now Vol 6880 Fol 125      |
| 09.08.1956<br>(1956 to date)         | Cumberland Newspapers Limited<br>(# now Cumberland Printers Pty Limited)                                                         | Vol 6880 Fol 125 now 11/790287             |

# Denotes Current Registered Proprietor

### Email: grolly1@bigpond.net.au

# Service First Registration Pty Ltd Suite 102, Level 1, 64 Castlereagh Street Sydney 2000 PO Box 1539 Sydney 2000 DX 189 Sydney

### As regards the part marked (18) on the attached cadastre

| Date of Acquisition<br>and term held | Registered Proprietor(s) & Occupations where available                                                                    | Reference to Title at Acquisition and sale |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 07.08.1928<br>(1928 to 1948)         | Theresa Stapleton (Married Woman)                                                                                         | Book 1504 No. 949 now Vol 4468 Fol 8       |
| 07.02.1948<br>(1948 to 1949)         | John Thomas Stapleton (Estate Agent)<br>Lily Frances Lynch (Married Woman)<br>(Transmission Application not investigated) | Vol 4468 Fol 8                             |
| 18.05.1949<br>(1949 to 1955)         | John Thomas Stapleton (Estate Agent)                                                                                      | Vol 4468 Fol 8 now Vol 6124 Fol 97         |
| 09.08.1955<br>(1955 to date)         | Cumberland Newspapers Limited<br>(# now Cumberland Printers Pty Limited)                                                  | Vol 6124 Fol 97 now 11/790287              |

# Denotes Current Registered Proprietor

ACN: 108 037 029

Ph: 02 9233 1314

Fax: 9233 2878

### As regards the part marked (19) on the attached cadastre

| Date of Acquisition<br>and term held | Registered Proprietor(s) & Occupations where available                   | Reference to Title at Acquisition and sale |
|--------------------------------------|--------------------------------------------------------------------------|--------------------------------------------|
| 03.02.1928<br>(1928 to 1955)         | John Thomas Stapleton (Estate Agent)                                     | Book 1502 No. 19 now Vol 4666 Fol 246      |
| 09.08.1955<br>(1955 to date)         | Cumberland Newspapers Limited<br>(# now Cumberland Printers Pty Limited) | Vol 4666 Fol 246 now 11/790287             |

# Denotes Current Registered Proprietor

### As regards the part marked (20) on the attached cadastre

| Date of Acquisition<br>and term held | Registered Proprietor(s) & Occupations where available | Reference to Title at Acquisition and sale |
|--------------------------------------|--------------------------------------------------------|--------------------------------------------|
| 18.05.1949                           | Lily Frances Lynch (Married Woman)                     | Vol 4278 Fol 61                            |
| (1949 to 1949)                       |                                                        |                                            |
| 16.05.1951                           | John Thomas Stanleton (Estate Acont)                   | Vol 4278 Fol 61 now Vol 6124 Fol 07        |
| (1951 to 1955)                       | John monias Stapleton (Estate Agent)                   | VOI 4278 FOI 01 110W VOI 0124 FOI 97       |
| 09.08.1955                           | Cumberland Newspapers Limited                          | V-1 (124 E-107 11 /700297                  |
| (1955 to date)                       | (# now Cumberland Printers Pty Limited)                | Vol 0124 Fol 97 now 117 / 90287            |

# Denotes Current Registered Proprietor

Yours Sincerely Drew Fallon 19 April 2010



For all ACTIVITY PRIOR to SEPT 2002 you must refer to the RGs Charting and Reference Maps.



For all ACTIVITY PRIOR to SEPT 2002 you must refer to the RGs Charting and Reference Maps.

| Department of l ands           | Cadastral Re           | ecords Enquiry Rep    | ort Ref : surv:scim-grollm         |
|--------------------------------|------------------------|-----------------------|------------------------------------|
| Reliable from the ground up    | Requested Parcel : Lot | 11 DP 790287          | entified Parcel : Lot 11 DP 790287 |
| Locality : PARRAMATTA          | LGA : PARRAMATTA       | Parish : ST JOHN      | County : CUMBERLAND                |
|                                | Status                 | Surv/Comp             | Purpose                            |
| DP128928<br>Lot(s): 1          |                        |                       |                                    |
| DD1390897                      | HISTORICAL             | SURVEY                | UNRESEARCHED                       |
| Lot(s): 12, 13                 | HISTOPICAL             |                       |                                    |
| DP192710                       |                        |                       | OINCOENVOIEU                       |
| Lot(s): 1, 2, 5 Section : 1    | 5 SECTION 1 DP192710)  |                       |                                    |
| Lot(s): 3, 4 Section : 1       | SECTION 1 DD102710)    |                       |                                    |
| DP797090                       |                        |                       |                                    |
| LU(s). 1, 2<br>DP1096545       | REGISTERED             | COMPILATION           | DEPARTMENTAL                       |
| ACQUIRED FOR THE               | PURPOSES OF OPEN SPA   | CE: SEE AC203091      | Folio : 1365                       |
| DP939368                       |                        |                       |                                    |
| Lou(s). ou                     |                        |                       |                                    |
| DP1055253                      |                        |                       |                                    |
| DP241                          | HISTORICAL             | COMPILATION           | UNRESEARCHED                       |
| 📃 DP7809                       | HISTORICAL             | SURVEY                | UNRESEARCHED                       |
| DP1082194                      |                        |                       |                                    |
| DP128208                       | HISTORICAL             | COMPILATION           | DEPARTMENTAL                       |
| DP419172                       | HISTORICAL             | SURVEY                | UNRESEARCHED                       |
| DP607818                       | HISTORICAL             | SURVEY                | OLD SYSTEM CONVERSION              |
| DP608152                       | HISTORICAL             | SURVEY                | OLD SYSTEM CONVERSION              |
| DP1052493                      | REGISTERED             | SURVEY                | CONSOLIDATION                      |
| SP74016                        | REGISTERED             |                       | EASEMENI<br>STDATA DI AN           |
| Lot(s): 204                    |                        |                       |                                    |
| Lot(s): 201                    | PRE-EXAM               | COMPILATION           | STRATA PLAN                        |
| SP74911                        | PRE-EXAM               | COMPILATION           | STRATA PLAN                        |
| DP1082610<br>Lot(s): 101       |                        |                       |                                    |
| DP17466                        | HISTORICAL             | SURVEY                | UNRESEARCHED                       |
| DP80558                        | HISTORICAL             | SURVEY                | UNRESEARCHED                       |
|                                | HISTORICAL             | COMPILATION           | UNKESEARCHED                       |
| DP594023                       | HISTORICAL             | SURVEY<br>COMPILATION | UNRESEARCHED                       |
| DP1102976                      | REGISTERED             | SURVEY                | EASEMENT                           |
| DP1107686                      |                        |                       |                                    |
| CA103363 - LOT 56 DF           | 1107686                |                       |                                    |
| 🐙 CA103597 - LOT 34 DF         | 1107897                |                       |                                    |
| DP1107897<br>Lot(s): <u>34</u> |                        |                       |                                    |

•

| CA103597 - LOT        | 34 DP1107897 |             |                           |
|-----------------------|--------------|-------------|---------------------------|
| DP1115358<br>otto: 11 |              |             |                           |
| -oue). H              | HISTORICAL   | SURVEY      | UNRESEARCHED              |
| DP1003950             | REGISTERED   | SURVEY      | REDEFINITION              |
| DP1064898             | REGISTERED   | SURVEY      | RESUMPTION OR ACQUISITION |
| DP1115360             |              |             |                           |
| _ot(s): 20            |              |             |                           |
| <b>DP376287</b>       | HISTORICAL   | COMPILATION | UNRESEARCHED              |
| <b>DP1003950</b>      | REGISTERED   | SURVEY      | REDEFINITION              |
| DP1064898             | REGISTERED   | SURVEY      | RESUMPTION OR ACQUISITION |
|                       |              |             |                           |

Caution: For all ACTIVITY PRIOR to SEPT 2002 you must refer to the RGs Charting and Reference Maps. Report Generated 10:12:23 AM, 1 April, 2010 Caution:

Page 2 of 4
| o p                |
|--------------------|
| e a                |
|                    |
| J the              |
| U LO               |
| nt <sup>e</sup> fi |
| ab la              |
| E                  |
| t                  |
| a                  |
| d                  |
| )e                 |
|                    |
|                    |
|                    |
|                    |

Ref : surv:scim-grollm **Cadastral Records Enquiry Report** ds S

| Reliable from the ground up | Requested Parcel : Lot | t 11 DP 790287 Iden | tified Parcel : Lot 11 DP 790287 |
|-----------------------------|------------------------|---------------------|----------------------------------|
| Locality : PARRAMATTA       | LGA : PARRAMATTA       | Parish : ST JOHN    | County : CUMBERLAND              |
|                             | Status                 | Surv/Comp           | Purpose                          |
| DP1115363                   |                        |                     |                                  |
| LUI(s). 40                  | HISTORICAL             | SURVEY              | UNRESEARCHED                     |
| DP1064898                   | REGISTERED             | SURVEY              | RESUMPTION OR ACQUISITION        |
| DP1115365<br>Lot(s): 30     |                        |                     |                                  |
| DP337507                    | HISTORICAL             | SURVEY              | UNRESEARCHED                     |
| <b>DP1064898</b>            | REGISTERED             | SURVEY              | RESUMPTION OR ACQUISITION        |
| DP1116292                   |                        |                     |                                  |
| Luis). 12                   | HISTORICAL             | COMPILATION         | UNRESEARCHED                     |
| <b>DP628861</b>             | HISTORICAL             | COMPILATION         | CONSOLIDATION                    |
| <b>DP801388</b>             | HISTORICAL             | COMPILATION         | SUBDIVISION                      |
| DP971715                    | HISTORICAL             | COMPILATION         | UNRESEARCHED                     |
| DP1046112                   | HISTORICAL             | COMPILATION         | DEPARTMENTAL                     |
| DP1112030                   | REGISTERED             | SURVEY              | CONSOLIDATION                    |
| SP68569                     |                        |                     |                                  |
| DP241                       | HISTORICAL             | COMPILATION         | UNRESEARCHED                     |
| <b>DP390896</b>             | HISTORICAL             | COMPILATION         | UNRESEARCHED                     |
| DP1027682                   | REGISTERED             | SURVEY              | CONSOLIDATION                    |
| SP70733                     |                        |                     |                                  |
| UP 241                      | HIS I URICAL           | COMPILATION         | UNKESEARCHED                     |
| DP1031891                   | REGISTERED             | SURVEY              | REDEFINITION                     |
| <b>SP68569</b>              | REGISTERED             | COMPILATION         | STRATA PLAN                      |
| SP80149                     |                        |                     |                                  |
| <b>DP1182</b>               | HISTORICAL             | COMPILATION         | UNRESEARCHED                     |
| DP628861                    | HISTORICAL             | COMPILATION         | CONSOLIDATION                    |
| DP801388                    | HISTORICAL             | COMPILATION         | SUBDIVISION                      |
| DP971715                    | HISTORICAL             | COMPILATION         | UNRESEARCHED                     |
| DP1046112                   | HISTORICAL             | COMPILATION         | DEPARTMENTAL                     |
| DP1112030                   | REGISTERED             | SURVEY              | CONSOLIDATION                    |
| DP1116292                   | REGISTERED             | SURVEY              | SUBDIVISION                      |
| SP80150                     |                        |                     |                                  |
| DP1182                      | HISTORICAL             | COMPILATION         | UNRESEARCHED                     |
| DP628861                    | HISTORICAL             | COMPILATION         | CONSOLIDATION                    |
| DP801388                    | HISTORICAL             | COMPILATION         | SUBDIVISION                      |
| DP971715                    | HISTORICAL             | COMPILATION         | UNRESEARCHED                     |
| DP1046112                   | HISTORICAL             | COMPILATION         | DEPARTMENTAL                     |
| DP1112030                   | REGISTERED             | SURVEY              | CONSOLIDATION                    |
| DP1116292                   | REGISTERED             | SURVEY              | SUBDIVISION                      |
| SP83360                     | UNREGISTERED           | COMPILATION         | STRATA SUBDIVISION PLAN          |

Unidentified Polygon Id(s): 101985571, 101985574

For all ACTIVITY PRIOR to SEPT 2002 you must refer to the RGs Charting and Reference Maps. Report Generated 10:12:23 AM, 1 April, 2010 Caution:



# <u>Cadastral Records Enquiry Report</u>

Ref : surv:scim-grollm

County : CUMBERLAND Identified Parcel : Lot 11 DP 790287 DEPARTMENTAL UNRESEARCHED UNRES UNRESEARCHED UNRESEARCHED UNRESEARCHED UNRESEARCHED DEPARTMENTAL STRATA PLAN PART STRATA PART STRATA SUBDIVISION Purpose Parish : ST JOHN Requested Parcel : Lot 11 DP 790287 COMPILATION COMPILATION COMPILATION COMPILATION COMPILATION COMPILATION COMPILATION SURVEY COMPILATION COMPILATION COMPILATION COMPILATION COMPILATION SURVEY COMPILATION COMPILATION COMPILATION SURVEY SURVEY SURVEY SURVEY COMPILATION LGA : PARRAMATTA Surv/Comp SURVEY SURVEY SURVEY SURVEY SURVEY SURVEY SURVEY SURVEY Department of Lands Locality : PARRAMATTA DP1115358 DP1115358 DP1115363 DP1115363 DP1115365 DP1116292 DP962151 DP1055253 DP1082194 DP1082194 DP1082610 DP1107686 DP1107897 DP128881 DP128928 DP128928 DP128929 DP128929 DP182726 DP182726 DP192710 DP192710 DP336066 DP375159 DP375159 DP38895 DP338895 DP338895 DP338895 DP449406 DP539427 DP615271 DP758829 DP790287 DP797090 DP939368 DP734818 DP748984 DP706341 DP706694 DP128847 DP633057 DP1182 DP7809 DP17466 DP93897 DP93898 DP93898 SP19118 SP19271 SP19540 SP19540 SP19863 SP19863 SP19863 SP19863 SP20733 SP80149 SP80150 DP69432 SP19041 Plan

4 Page 4 of

Report Generated 10:12:23 AM, 1 April, 2010



Åa 31-/Prt: ¥ ĕ

٩

/Seq:1

/Pgs:ALL

07:56

2010

992 27-A1 /Rev Δ. 87 5 DP U

Ϋ́ :R349545 :df /Src:1

Req:

200



.

.

ы :17 -Dec /Sts ğ ę /Prt 07-Apr-2010 11:09 /Pgs:ALL /Seq:1 0f

#### Print Image



Title Search Results

4

è



# **Title Search**

LEAP Searching An Approved LPI NSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

#### FOLIO: 11/790287

-----

| SEARCH DATE | TIME    | EDITION NO | DATE      |
|-------------|---------|------------|-----------|
|             |         |            |           |
| 31/3/2010   | 7:57 AM | 4          | 22/4/1993 |

#### LAND

LOT 11 IN DEPOSITED PLAN 790287 AT PARRAMATTA LOCAL GOVERNMENT AREA PARRAMATTA PARISH OF ST JOHN COUNTY OF CUMBERLAND TITLE DIAGRAM DP790287

#### FIRST SCHEDULE

#### CUMBERLAND PRINTERS PTY. LIMITED

(CN E764737)

SECOND SCHEDULE (9 NOTIFICATIONS)

| DLCC | Denibboi   | () NOTIFICATIOND)                                        |
|------|------------|----------------------------------------------------------|
|      |            |                                                          |
| 1    | RESERVATIO | ONS AND CONDITIONS IN THE CROWN GRANT(S)                 |
| 2    | LAND EXCLU | JDES MINERALS AFFECTING THE PART OF THE LAND ABOVE       |
|      | DESCRIBED  | SHOWN SO BURDENED IN THE TITLE DIAGRAM-SEE CROWN GRANT   |
| 3    | F384189    | COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE     |
|      |            | TITLE DIAGRAM.                                           |
| 4    | G351855    | COVENANT AFFECTING THE PART SHOWN SO BURDENED IN THE     |
|      |            | TITLE DIAGRAM.                                           |
| 5    | H678027    | MORTGAGE TO COMMONWEALTH BANK OF AUSTRALIA AFFECTING     |
|      |            | THE PART FORMERLY IN B/337665                            |
| 6    | H678028    | MORTGAGE TO COMMONWEALTH BANK OF AUSTRALIA AFFECTING     |
|      |            | THE PART FORMERLY IN 3/388895                            |
| 7    | H748622    | MORTGAGE TO COMMONWEALTH BANK OF AUSTRALIA AFFECTING     |
|      |            | THE PART FORMERLY IN 5/108201 AND 6/108201               |
| 8    | H784203    | MORTGAGE TO COMMONWEALTH BANK OF AUSTRALIA AFFECTING     |
|      |            | THE PART FORMERLY IN 1/372524                            |
| 9    | I259047    | EASEMENT FOR ELECTRICITY PURPOSES 5 WIDE AFFECTING       |
|      |            | PART OF THE LAND WITHIN DESCRIBED SHOWN SO BURDENED IN   |
|      |            | DP 646633                                                |
|      |            |                                                          |
| NOTA | TIONS      |                                                          |
|      |            |                                                          |
| NOTE | : THE CERI | TIFICATE OF TITLE FOR THIS FOLIO OF THE REGISTER DOES    |
|      | NOT INCLUI | DE SECURITY FEATURES INCLUDED ON COMPUTERISED            |
|      | CERTIFICAT | ES OF TITLE ISSUED FROM 4TH JANUARY, 2004. IT IS         |
|      | RECOMMENDE | ED THAT STRINGENT PROCESSES ARE ADOPTED IN VERIFYING THE |
|      | IDENTITY C | OF THE PERSON(S) CLAIMING A RIGHT TO DEAL WITH THE LAND  |
|      | COMPRISED  | IN THIS FOLIO.                                           |
| UNRE | GISTERED I | DEALINGS: NIL                                            |

\*\*\* END OF SEARCH \*\*\*

df

PRINTED ON 31/3/2010

\* Any entries preceded by an asterisk do not appear on the current edition of the Certificate of Title. Warning: the information appearing under notations has not been formally recorded in the Register. Leap Searching hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 92B(2) of the Real Property Act.



## **Historical Title**

LEAP Searching An Approved LPI NSW Information Broker

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE

31/3/2010 7:58AM

FOLIO: 11/790287

-----

. .

| First Title(s): | OLD SYSTEM |                  |
|-----------------|------------|------------------|
| Prior Title(s): | 5-7/108201 | 1/115985         |
|                 | B/337665   | 1/372524         |
|                 | 3/388895   | B/433897         |
|                 | AA/433897  | VOL 7340 FOL 242 |

| Recorded  | Number   | Type of Instrument   | C.T. Issue                 |
|-----------|----------|----------------------|----------------------------|
| 23/5/1990 | DP790287 | DEPOSITED PLAN       | FOLIO CREATED<br>EDITION 1 |
| 1/9/1992  | DP646633 | DEPOSITED PLAN       |                            |
| 9/10/1992 | E764737  | CHANGE OF NAME       | EDITION 2                  |
| 4/1/1993  | 119963   | DEPARTMENTAL DEALING | EDITION 3                  |
| 22/4/1993 | 1259047  | GRANT OF EASEMENT    | EDITION 4                  |
|           |          |                      |                            |

\*\*\* END OF SEARCH \*\*\*

df

PRINTED ON 31/3/2010

Leap Searching hereby certifies that the information contained in this document has been provided electronically by the Registrar General in accordance with Section 92B(2) of the Real Property Act.



HISTORICAL AERIAL PHOTOGRAPHS 142-154 MACQUARIE STREET, PARRAMATTA



**Douglas Partners** Geotechnics - Environment - Groundwater



142-154 MACQUARIE STREET, PARRAMATTA





HISTORICAL AERIAL PHOTOGRAPHS 142-154 MACQUARIE STREET, PARRAMATTA



**Douglas Partners** Geotechnics - Environment - Groundwater



PHOTO 7: Aerial photograph from 1986



PHOTO 8: Aerial photograph from 1991

HISTORICAL AERIAL PHOTOGRAPHS 142-154 MACQUARIE STREET, PARRAMATTA







PHOTO 9: Aerial photograph from 2002



PHOTO 10: Aerial photograph from 2008

HISTORICAL AERIAL PHOTOGRAPHS 142-154 MACQUARIE STREET, PARRAMATTA



**Douglas Partners** Geotechnics - Environment - Groundwater

A A 🐳



You are here: Home > Contaminated land > Record of EPA notices

### Search results

Your search for: LGA: Parramatta City Council

Matched 45 notices relating to 12

sites.

Search Again

Refine Search

| Suburb     | Address                | Site Name                     | Notices related to this site |
|------------|------------------------|-------------------------------|------------------------------|
| Camellia   | 12 Grand Avenue        | 12 Grand Avenue, Camellia     | 2 current                    |
| Camellia   | 37 Grand Avenue        | 37 Grand Avenue, Camellia     | 2 current                    |
| Camellia   | 39 Grand Avenue        | 39 Grand Avenue, Camellia     | 3 current and 1 former       |
| Camellia   | 6-10 Grand Avenue      | <u>Akzo Chemicals</u>         | 5 current and 4<br>former    |
| Camellia   | 14 Grand Avenue        | Hymix                         | 1 current and 2 former       |
| Camellia   | 1 Grand Avenue         | James Hardie Asbestos Factory | 1 former                     |
| Camellia   | 41 Grand Avenue        | Sydney Water                  | 3 former                     |
| Granville  | 2B Factory Street      | Ajax Battery Factory          | 1 current and 2 former       |
| Granville  | 2 Blaxcell Street      | Shore Petroleum               | 4 current                    |
| Rosehill   | Devon/Colquhoun Street | James Hardje Landfill         | 4 current and 6 former       |
| Rosehill   | 2 Ritchie Street       | Pentecostal Church            | 1 current and 1 former       |
| Rydalmere  | 1 Alan Street          | Rheem Rydalmere               | 2 current                    |
| raye I UFI |                        |                               | 2 July 2010                  |

NSW Government i jobs.nsw

Accessibility | Privacy | Disclaimer | Copyright | Feedback

## Parramatta

Map created with NSW Natural Resource Atlas - http://www.nratlas.nsw.gov.au

Tuesday, July 20, 2010



#### Legend

| Symbol | Layer                                                                   | Custodian |
|--------|-------------------------------------------------------------------------|-----------|
| 0      | Cities and large towns renderImage:<br>Cannot build image from features |           |
| Compo  | Populated places renderImage: Cannot build image from features          |           |
| •      | Towns                                                                   |           |
| •      | Groundwater Bores                                                       |           |
|        | Catchment Management Authority boundaries                               |           |
| AZ     | Major rivers                                                            |           |

#### Topographic base map

http://www.nratlas.nsw.gov.au/wmc/custom/widgets/printlink/popup/printmap.jsp?

20/07/2010



Copyright © 2010 New South Wales Government. Map has been compiled from various sources and may contain errors or omissions. No representation is made as to its accuracy or suitability.

WORKCOVER NEW SOUTH WALES Our Ref: D10/042352 Peter Oitmaa

6 April 2010

Attention: Peter Oitmaa Douglas Partners Pty Limited PO Box 472 WEST RYDE NSW 1685

Dear Peter,

#### Re Site: 42-154 Macquarie Street, Parramatta NSW

I refer to your site search request received on 31<sup>st</sup> March 2010 requesting information on a Licence to Keep Dangerous Goods on the above site.

Enclosed are copies of the documents that WorkCover NSW holds on Dangerous Goods Licence, 35/016006 relating to the storage of dangerous goods at the above-mentioned premises, as listed on the Stored Chemical Information Database (SCID).

If you have any further queries, please contact WorkCover's Dangerous Goods Licensing staff on (02) 4321 5500.

Yours sincerely

Diana Hayes Senior Licensing Officer Dangerous Goods Team

#### WorkCover. Watching out for you.

WorkCover NSW ABN 77 682 742 966 92-100 Donnison Street Gosford NSW 2250 Locked Bag 2906 Lisarow NSW 2252 Telephone 02 4321 5000 Facsimile 02 4325 4145 WorkCover Assistance Service **13 10 50** DX 731 Sydney Website www.workcover.nsw.gov.au

Licence No. 35/016006

I MARL I MAR MELL DIN AND MARP, 17, 180

# \*\* REMINDER NOTICE \*\* APPLICATION FOR RENEWAL

OF LICENCE TO KEEP DANGEROUS GOODS

ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER

DECLARATION: Please renew licence number 35/016006 to 2005/2006 . I confirm that all the licence details shown below are correct (amend if necessary).

(Date signed) Please print name) (Signature) for: NATIONWIDE NEWS P/L THIS SIGNED DECLARATION SHOULD BE RETURNED TO: WorkCover New South Wales **Dangerous Goods Licensing Section** Enquiries: ph (02) 4321 5500 fax (02) 9287 5500 Locked Bag 2906 LISAROW NSW 2252 Details of licence on 4 January 2005 Expiry Date 18/11/2004 No. of Depots 1 Licence Number 35/016006 NATIONWIDE NEWS P/L ACN 008 438 828 Licensee CUMBERLAND NEWSPAPERS Postal Address: CUMBERLAND NEWSPAPERS 142-154 MACQUARIE ST PARRAMATTA NSW 2150 Licensee Contact DAVE HARD Ph. 02 9689 5522 Fax. 02 9689 5521 Premises Licensed to Keep Dangerous Goods NATIONWIDE NEWS P/L CUMBERLAND NEWSPAPERS 142-154 MACQUARIE ST PARRAMATTA 2150 Nature of Site PUBLISHING Major Supplier of Dangerous Goods AGL Emergency Contact for this Site DAVE HARD A/H 9904 0451 Ph. 02 9689 5522 Jon UIDAM AIH 0412741441 Site staffing 16 HRS 5 DAYS Details of Depots Qty **Goods Stored in Depot** Depot No. Depot Type 150 M3 ABOVE-GROUND TANK Class 2.1 CNG 150 M3 UN 1971 METHANE, COMPRESSED

#### FORM DG10

CUMBERLAND NEWSPARER GROU 96895521

#### uy, Binh

'From: Sent: <sup>4</sup> To: Cc: Subject: Brown, Vince [BrownV@cng.newsltd.com.au] Tuesday, 7 November 2000 10:19 scid@workcover.nsw.gov.au Sultana, Frank Renewal of Licence No: 35/016006

Importance:

High





7 November 2000

WORKCOVER NSW, SCIENTIFIC SERVICES BRANCH G.P.O. BOX 5364, SYDNEY NSW 2001 E-mail: scid@workcover.nsw.gov.au

Attention: Kham Sirimanotham

RE: RENEWAL OF LICENCE No: 35/016006

388

The above licence is due for renewal on November 19, 2000 and would like to have the following amendments made to it.

I wish to advise that 3 underground storage tanks (1 x 20,000 litres, 1 x 5000 litres that held petrol and 1 x 5000 litres that held heating oil) have been abandoned.

This abandonment was completed by John F. Taylor Pty Ltd to the Australian Standards. An attachment of their statement is below.

Two of our three forklifts were converted to Natural gas which created a reduction in the use and storage of LPG. The LPG Cylinder Store, presently holding 5 x 18kg cylinders, will also be abandoned as the last forklift is converted to natural gas.

We have had installed a Natural Gas storage unit (UN1971, Class 2.1), see AGL's correspondence to Workcover on May 30, 2000 regarding the Application for Licence to Keep Dangerous Goods (amendment) for Nationwide News Pty Ltd, trading as Cumberland Newspapers, 142-154 Macquarie Street, Parramatta.

Please note that the our ABN is 98 008 438 828.

Vince Brown Works, Newsprint/Purchasing Manager e-mail: brownv@cng.newsltd.com.au (02) 9689 5522, fax 9689 5521

> This message and its attachments may contain legally privileged or

> confidential information. It is intended solely for the named addressee.

> If you are not the addressee indicated in this message (or responsible for

> delivery of the message to the addressee), you may not copy or deliver this message or its attachments to anyone. Rather, you should permanently delete this message and its attachments and kindly notify the sender by reply email. Any content of this message and its attachments which does

1



#### AGL Gas Networks



30 May 2000

The Chief Inspector of Dangerous Goods WorkCover NSW Chemical Safety Unit GPO Box 5364 SYDNEY, NSW 2001

Dear Sir,

Re: CUMBERLAND NEWSPAPERS 142 - 154 Macquarie Street, Parramatta Application for Licence to Keep Dangerous Goods (amendment)

Attached is the amendment to the Application for License to Keep Dangerous Goods at the above premises. A natural gas compressor with storage (Depot CNG) will be added to the existing LPG1 depot. The LPG1 depot will be removed in the future, when all forklifts have been converted to compressed natural gas forklifts.

The depot PGIIa underground tank and depot PGIIb underground tank will be decommissioned prior to the installation of the CNG depot.

The site drawing of the natural gas refuelling station was certified by our consultant, S.C. Gall. This natural gas station complied with the requirements of NSW Dangerous Goods Act & Regulations, Australian Standard AS/NZS 2403.3.4 and Australian Gas Association Codes AG901 and AG601.

Yours faithfully,

Hendra Satyo NGV Project Engineer

AGL Gas Networks Limited ACN 003 004 322 18 Huntley Street Alexandria NSW 2015 Telephone 02 9565 7178 Facsimile 02 9565 7047 or 02 9565 7050

THE AUSTRALIAN GAS LIGHT COMPANY SINCE 1837

|                                                                  | नेत्वा<br>जन्म                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                  |                                                                                                                                                     |                              | o<br>is                                                                                     | WORKCO<br>NEW SOUTH               |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------|
| ٩p                                                               | plication for ne                                                                                                                                                                                                                                                                                                                                              | ew licence                                                                                                                                                                                       | amend                                                                                                                                               | iment 🗌 trans                | fer 🗌 renewa                                                                                | i of expired licen                |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                  |                                                                                                                                                     |                              |                                                                                             |                                   |
| 1-7-<br>1                                                        | Name of applicant                                                                                                                                                                                                                                                                                                                                             | ant and                                                                                                                                                                                          | sie moi                                                                                                                                             | <i>Mulation</i>              | ACN                                                                                         |                                   |
| È                                                                | Marie of applicant                                                                                                                                                                                                                                                                                                                                            | Di                                                                                                                                                                                               |                                                                                                                                                     |                              | 008 42                                                                                      | 8 8 28                            |
| 2                                                                | Postal address of an                                                                                                                                                                                                                                                                                                                                          | vens rit                                                                                                                                                                                         |                                                                                                                                                     |                              | Suburb/Town                                                                                 | Postcode                          |
|                                                                  | 147-154                                                                                                                                                                                                                                                                                                                                                       | SACOUAO                                                                                                                                                                                          |                                                                                                                                                     |                              | PARRAMATTA                                                                                  | 2150                              |
| 3                                                                | Trading name or site                                                                                                                                                                                                                                                                                                                                          | occupier's                                                                                                                                                                                       | name                                                                                                                                                |                              | 1                                                                                           |                                   |
| Г                                                                | CULTERIA                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                  | 24.02.00                                                                                                                                            |                              |                                                                                             |                                   |
| 4                                                                | Contact for licence i                                                                                                                                                                                                                                                                                                                                         | inquiries                                                                                                                                                                                        | PATURS                                                                                                                                              | ······                       |                                                                                             |                                   |
| •                                                                | Phone                                                                                                                                                                                                                                                                                                                                                         | Fax                                                                                                                                                                                              | 4                                                                                                                                                   | Name                         | ·. ·                                                                                        |                                   |
| 5<br>6                                                           | Previous licence nur<br>Previous occupier (it                                                                                                                                                                                                                                                                                                                 | nber (if knov<br>£known)                                                                                                                                                                         | vn) 35/01                                                                                                                                           | 6006                         |                                                                                             |                                   |
| 5<br>6<br>7                                                      | Previous licence nur<br>Previous occupier (if<br>Site to be licensed<br>No                                                                                                                                                                                                                                                                                    | nber (if knov<br>f.known)<br>Street                                                                                                                                                              | NN) 35/01                                                                                                                                           | 5                            |                                                                                             |                                   |
| 5<br>6<br>7                                                      | Previous licence nur<br>Previous occupier (if<br>Site to be licensed<br>No<br>142-154<br>Suburb / Town                                                                                                                                                                                                                                                        | mber (if knov<br>f. known)<br>Street<br>MACC                                                                                                                                                     | vn) 35/01<br>~/み<br>RUARIE                                                                                                                          | 5T                           | Postcode                                                                                    |                                   |
| 5 6 7                                                            | Previous licence nur<br>Previous occupier (if<br>Site to be licensed<br>No<br>142-154<br>Suburb / Town<br>PARRAMA                                                                                                                                                                                                                                             | mber (if knov<br>f.known)<br>Street<br>MACC                                                                                                                                                      | NN) 35/01                                                                                                                                           | 5T                           | Postcode                                                                                    |                                   |
| 5<br>6<br>7<br>[]<br>8<br>9<br>10                                | Previous licence nur<br>Previous occupier (if<br>Site to be licensed<br>No<br>142-154<br>Suburb / Town<br>PARRAMA<br>Main business of sit<br>Site staffing: Hours<br>Emergency contact                                                                                                                                                                        | mber (if knov<br>f. known)<br>Street<br>MACC<br>TFA                                                                                                                                              | N) 35/01<br>N/A<br>RUARIE<br>BLISMINE                                                                                                               | Days per week                | Postcode<br>: 2.150                                                                         |                                   |
| 5<br>6<br>7<br>8<br>9<br>10                                      | Previous licence nur<br>Previous occupier (if<br>Site to be licensed<br>No<br>142-154<br>Suburb / Town<br>PARRAMA<br>Main business of sit<br>Site staffing: Hours<br>Emergency contact<br>Phone                                                                                                                                                               | mber (if knov<br>f.known)<br>Street<br>MACC<br>TFA                                                                                                                                               | VN) 35/01<br>NA<br>RUARIE<br>BLISTIINE                                                                                                              | Days per week                | Postcode<br>: 2.150                                                                         |                                   |
| 5<br>6<br>7<br>8<br>9<br>10                                      | Previous licence nur<br>Previous occupier (it<br>Site to be licensed<br>No<br>142-154<br>Suburb / Town<br>PARRAMA<br>Main business of sit<br>Site staffing: Hours<br>Emergency contact<br>Phone<br>VTNICE BR                                                                                                                                                  | mber (if knov<br>f. known)<br>Street<br>MACC<br>TEA<br>e PUC<br>per day                                                                                                                          | NN) 35/01<br>N/A<br>RUARIE<br>BLISTING<br>16                                                                                                        | Days per week                | Postcode<br>2150<br>5<br>BROWN                                                              |                                   |
| 5<br>6<br>7<br>[]<br>8<br>9<br>10<br>[]<br>11                    | Previous licence nur<br>Previous occupier (if<br>Site to be licensed<br>No<br>142-154<br>Suburb / Town<br>PARRAMA<br>Main business of sit<br>Site staffing: Hours<br>Emergency contact<br>Phone<br>VINCE DR<br>Major supplier of da                                                                                                                           | mber (if knov<br>f.known)<br>Street<br>MACC<br>TTA<br>e PUT<br>per day [<br>CTA 96<br>Ingerous goo                                                                                               | NN) 35/01<br>N/A<br>RUARIE<br>BLISTINE<br>16<br>89 5522<br>Dds N B                                                                                  | Days per week                | Postcode<br>2.150<br>5<br>BROWN                                                             |                                   |
| 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>Pli                   | Previous licence nur<br>Previous occupier (it<br>Site to be licensed<br>No<br>142-154<br>Suburb / Town<br>PARRAMA<br>Main business of sit<br>Site staffing: Hours<br>Emergency contact<br>Phone<br>VTAICE DR<br>Major supplier of da<br>If a new site or for a<br>an stamped by:                                                                              | mber (if knov<br>f.known)<br>Street<br>MACC<br>TEA<br>e PUT<br>per day<br><u>ETTA 96</u><br>Ingerous goo<br>mendments<br>Name of A                                                               | Nn) 35/01<br>N/A<br>RUARIE<br>BLISTINE<br>16<br>89 5522<br>ods NB<br>to depots<br>Accredited Co                                                     | Days per week<br>Name        | Postcode<br>2.50<br>3<br>BROWN<br>Date stampe                                               |                                   |
| 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>Pli                   | Previous licence nur<br>Previous occupier (if<br>Site to be licensed<br>No<br>142-154<br>Suburb / Town<br><u>PARRAMA</u><br>Main business of sit<br>Site staffing: Hours<br>Emergency contact<br>Phone<br><del>VTNCC PR</del><br>Major supplier of da<br>If a new site or for a<br>an stamped by:                                                             | mber (if know<br>f.known)<br>Street<br><u>MACC</u><br>TFA<br>e <u>PU</u><br>e <u>PU</u><br>per day<br><u>ECCA 96</u><br>Ingerous goo<br>mendments<br>Name of A<br>S.                             | NN) 35/01<br>NA<br>BUARIE<br>BUSTINE<br>16<br>16<br>89 5522<br>ods × B<br>to depots<br>Accredited Co<br>C. CALL                                     | Days per week Name Cince     | Postcode<br>2.150<br>5<br>BROWN<br>Date stampe<br>2.1 [0]                                   | d<br>5100                         |
| 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>Pli<br>13             | Previous licence nur<br>Previous occupier (if<br>Site to be licensed<br>No<br>142-154<br>Suburb / Town<br>PARRAMA<br>Main business of sit<br>Site staffing: Hours<br>Emergency contact<br>Phone<br>VTNCCOPR<br>Major supplier of da<br>If a new site or for a<br>an stamped by:<br>Signature of applica                                                       | mber (if know<br>f.known)<br>Street<br><u>MACC</u><br>TFA<br>e <u>PUR</u><br>per day<br><u>ECCA 96</u><br>ingerous goo<br>mendments<br><u>Name of A</u><br><u>S</u> .<br>in this applications go | vn) 35/01<br>N/A<br>BUARIE<br>BUSHINE<br>16<br>16<br>89 5522<br>ods × B<br>to depots<br>Accredited Co<br>C. CALL<br>ation (includin<br>oods kept on | Days per week Name Cince Soc | Postcode<br>2.150<br>5<br>BROWN<br>Date stampe<br>2.1 [00<br>g computer disk) are o<br>Date | d<br>SICO<br>correct and cover a  |
| 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>Pli<br>10<br>10<br>11 | Previous licence nur<br>Previous occupier (if<br>Site to be licensed<br>No<br>142-154<br>Suburb / Town<br>PARRAMA<br>Main business of sit<br>Site staffing: Hours<br>Emergency contact<br>Phone<br>VTNICC PR<br>Major supplier of da<br>If a new site or for a<br>an stamped by:<br>certify that the details<br>ensable quantities of<br>Signature of applica | mber (if know<br>f.known)<br>Street<br>MACC<br>TFA<br>ie PUI<br>per day [<br>CCA 96<br>ingerous goo<br>imendments<br>Name of A<br>S.<br>in this application<br>dangerous goo                     | vn) 35/01<br>N/A<br>BUARIE<br>BUSMINE<br>16<br>16<br>89 5522<br>ods N B<br>to depots<br>Accredited Co<br>C. CALL<br>ation (includin<br>oods kept on | Days per week Name CINCE SOC | Postcode<br>2.150<br>BROWN<br>Date stampe<br>2.110<br>g computer disk) are o<br>Date        | ed<br>SICO<br>correct and cover a |

# PART C - Dangenous Gooda Storege Complete one section per depot.

If you have more depots than the space provided, photocopy sufficient sheets first.

| Depot<br>Number | Type of depot                            | Depot<br>Class         | Maximum<br>storage capacity |                       |
|-----------------|------------------------------------------|------------------------|-----------------------------|-----------------------|
| LPGI            | Cylinder store                           | 2.1                    | 150 Kg                      |                       |
| UN<br>Number    | Correct Shipping Name Class (I, II, III) | Product o<br>common na | or Typical<br>ame quantity  | Unit, e.g<br>L, kg, m |
| 1075            | Retroleum Gases, Liquefied 2.1           | LPG                    | 150                         | kg                    |
|                 |                                          |                        |                             |                       |

| Depot<br>Nùmber | Type of depot                       | -                     | Depot<br>Class              | Maximum<br>storage capacity |                       |
|-----------------|-------------------------------------|-----------------------|-----------------------------|-----------------------------|-----------------------|
| CNG             | (Methane)                           | êas -                 | 21                          | 150 m <sup>3</sup>          |                       |
| UN<br>Number    | Correct Shipping Name               | PG<br>Class (I, II, I | Product o<br>III) common na | r Typical<br>me quantity    | Unit, e.g<br>L. ka. m |
| 1971            | Compressed Natural<br>Gas (Methane) | 2.1                   | Natural Ga                  | S 150                       | 1113                  |
|                 |                                     |                       |                             | ř.                          |                       |

TRAS

| Depot<br>Number | Type of depot         | 2                        | Depot<br>Class |                         | Maximum<br>storage capacity |                       |
|-----------------|-----------------------|--------------------------|----------------|-------------------------|-----------------------------|-----------------------|
| UN<br>Number    | Correct Shipping Name | PG<br>Class (I, II, III) | - , F<br>Cor   | Product or<br>mmon name | Typical<br>quantity         | Unit, e.g<br>L, kg, m |
|                 |                       | 2                        | U.             | . *                     |                             |                       |
|                 |                       |                          |                |                         |                             |                       |

| Depot<br>Number | Type of depot         |                          | Depot<br>Class         | Maximum<br>storage capacity |                                     |
|-----------------|-----------------------|--------------------------|------------------------|-----------------------------|-------------------------------------|
| 1               | ÷                     | i.                       |                        |                             |                                     |
| UN<br>Number    | Correct Shipping Name | PG<br>Class (I, II, III) | Product or common name | Typical<br>quantity         | Unit, e.g.<br>L. kg, m <sup>r</sup> |
|                 |                       | 4                        |                        |                             |                                     |
|                 | -<br>                 | en 1                     |                        | 3 A                         | ÷                                   |



|                                                                            |                                       |               |                                                |                  | ICAI STORAG                            |
|----------------------------------------------------------------------------|---------------------------------------|---------------|------------------------------------------------|------------------|----------------------------------------|
| THE NEW SOUTH WALES GOVERNMENT<br>Printing propies first by managing betty |                                       | PARTIA        | CIENTIFIC SE<br>BRANCE<br>2070 109<br>DANGEROU | RIF              |                                        |
| LICEN                                                                      | CE TO KEE                             | P DAN         | IGET                                           | is goo           | DDS                                    |
| Applica                                                                    | tion for new lie                      | cence, a      | amendmer                                       | nt or trar       | Dangerous Goods Act 19<br><b>15fer</b> |
| Name of applicant                                                          | $\frac{16}{-}$ /s cs.                 | <u> 26</u>    | 7.98                                           | ACN              |                                        |
| NATIONWIDE                                                                 | NEWS PTV ITD                          |               |                                                | ACN              | 400.000                                |
| Site to be licensed<br>No Street                                           |                                       |               | ¥                                              | Band             | U/a tanf                               |
| Suburb/Town                                                                | QUARIE STREET,                        |               | Postcode                                       | - Itv            | withtich                               |
| PARRAMATT                                                                  | `A                                    |               | 2150                                           |                  |                                        |
| Nature of site NET                                                         | WSPAPER PUBLISH<br>site:              | ERS           | * 2012                                         | 21 SEP           | A                                      |
| 689.5500                                                                   | - VINC                                | E BROWN       | 1                                              |                  | ) by                                   |
| Site staffing: Hou                                                         | rs per day16                          |               | Days per week                                  | 5                |                                        |
| Major supplier of dange                                                    | rous goods ROH                        | AN PETR       | OLEUM 🛠                                        | Pretra           | 1-1                                    |
| f new site or significant<br>Plan stamped by:                              | modification<br>Accredited consultant | t's name:     |                                                | Date st          | amped                                  |
|                                                                            |                                       |               |                                                |                  |                                        |
| Number of dangerous g<br>rading name or occupi                             | oods depots at site                   | 2             |                                                |                  |                                        |
| CUMBERLAN                                                                  | D NEWSPAPERS                          |               |                                                |                  |                                        |
| Postal address of applic                                                   | ant                                   | 199           | Suburb/Town                                    |                  | Postcode                               |
| P.O. BOX 211                                                               |                                       |               | PARRAMAT                                       | ГТА              | 2150                                   |
| Contact for licence enqu<br>Phone                                          | uiries:<br>Fax                        | Name          |                                                |                  |                                        |
| 689.5500                                                                   | 689.5277                              | VII           | NCE BROWN                                      |                  | Y 5                                    |
|                                                                            | CONTROL PROVIDENCE AND ADDRESS        |               |                                                |                  |                                        |
| certify that the details of                                                | contained in this applicati           | ion (or the a | ccompanying com                                | nputer disk) are | e true and correct                     |

16

的形式



# CHEMICAL STORAGE

~?

## Complete 1 section per depot

# have more depots than the space provided, photocopy sufficient sheets first.

| Depot<br>number | Type of depot    | Class                   | Licensed maximum<br>storage capacity |                  |                    |  |
|-----------------|------------------|-------------------------|--------------------------------------|------------------|--------------------|--|
| PGII            | UNDERGROUND TANK | CLASS 3                 | 20,000 LTR.                          | /                |                    |  |
| UN<br>number    | Shipping name    | Pkg.<br>Class Group EPG | Product or common name               | Typical quantity | Uniteg<br>L, kg, m |  |
| 1203            | ROHAN PETROLEHM  | -                       | PETROL                               | 20,000           | L                  |  |
|                 |                  |                         |                                      |                  |                    |  |

| Depòt<br>number | Type of depot         | Class   |                   |    | Licensed maximum<br>storage capacity |                     |                                  |  |
|-----------------|-----------------------|---------|-------------------|----|--------------------------------------|---------------------|----------------------------------|--|
| PGILD           | •<br>UNDERGROUND TANK |         | CLASS             | 3  | 5,000 LTR                            |                     |                                  |  |
| UN<br>number    | Shipping name         | Class ( | Pkg.<br>Group EPG |    | Product or<br>common name            | Typical<br>quantity | Uniteg.<br>L, kg, m <sup>3</sup> |  |
| ¥ 1203          | ROHAN PETROLEUM       |         |                   | PE | TROL                                 | 5,000               | L                                |  |
|                 | *<br>**               | -       | A CONTRACTOR      |    |                                      |                     |                                  |  |

| Depot<br>number | Type of depot |              | Class            | Licensed max<br>storage capa | imum<br>acity       |                                  |
|-----------------|---------------|--------------|------------------|------------------------------|---------------------|----------------------------------|
| LPG             | cylinder Doot |              | 21               | 200Kg                        | s, (#               | ल्                               |
| UN<br>number    | Shipping name | F<br>Class G | Pkg.<br>roup EPG | Product or common name       | Typical<br>quantity | Uniteg.<br>L, kg, m <sup>3</sup> |
| \$ 1075         | Petroliumhas  | 2:1          |                  | LPGas                        | 100                 | Kg.                              |
|                 |               |              |                  |                              |                     |                                  |

| Depot<br>number | Type of depot |                    | Class | Licensed maximum<br>storage capacity |                     |                    |  |
|-----------------|---------------|--------------------|-------|--------------------------------------|---------------------|--------------------|--|
| UN<br>number    | Shipping name | Pkg.<br>Class Grou | p EPG | Product or common name               | Typical<br>quantity | Uniteg<br>L, kg, m |  |
|                 |               |                    |       |                                      |                     |                    |  |

# **CUMBERLAND NEWSPAPER GROUP**

A DIVISION OF NATIONWIDE NEWS PTY.LTD. ACN 008.438.828

26 October 1994

The Chief Inspector of Dangerous Goods, Workcover Authority, Chemical Safety Unit, Locked Bag 10 Clarence Street, SYDNEY. NSW 2000 SCIENTIFIC SEPVICES

Dear Sir,

#### Re: Underground Tank - Licence 35/016006

Referring to your letter dated 20th October, 1994 the above tank was found to be faulty, was emptied, dug out by the oil company (Caltex) on 19th January, 1991 and disposed of by that company.

We apologise for the oversight in not notifying your department of this change.

Yours faithfully,

VINCE BROWN <u>Works Manager</u>

PEOCINED

142-154 Macquarie Street, PARRAMATTA. 2150 Phone: (02)689.5500 Fax: (02)689.5521



Licensee

CUMBERLAND NEWSPAPERS DEL a DIVISION OF NATIONWIDE NEWS PTY LTD. BOX 211 P O PARRAMATTA 2150

30 OCT 1992

Dear Sir/Madam,

RE APPLICATION FOR RENEWAL OF LICENCE FOR THE KEEPING OF DANGEROUS GOODS

Our records indicate you hold licence number dangerous goods at 142 MACQUARIE ST PARRAMATTA

35/016006

for keeping

2150.

Details of depots at site.

| Depot | No. | Depot type       | Goods stored in depot 💦 🔨 Quantity |
|-------|-----|------------------|------------------------------------|
|       |     | +2.              | Kg/litres/no.                      |
| 1     |     | UNDERGROUND TANK | FLAMMABLE LIQUIDS 5 000            |
| 2     |     | ROOFED STORE     | FLAMMABLE LIQUIDS 4 000            |
| 3     |     | UNDERGROUND TANK | FLAMMABLE LIQUIDS 20 000           |
| 4     |     | UNDERGROUND TANK | FLAMMABLE LIQUIDS                  |
|       |     |                  | STE                                |

This licence is now due for renewal. If you are keeping these dangerous goods at the site mentioned you need TO RENEW YOUR LICENCE. Please carefully check the details shown in this letter and make any required corrections. Then, <u>SIGN</u> and <u>DATE</u> the declaration below and <u>return this letter</u> to the WorkCover Authority, Chemical Safety Unit. Fees for these licences have been abolished. DO NOT SEND ANY MONIES.

**Declaration:** Please renew this licence to 15/11/93. I certify that the licence details shown in this letter are correct.

| Known       | VINCE BROWN         |               |
|-------------|---------------------|---------------|
| (Signature) | (Please print name) | (Date signed) |

If renewal of the licence is not required. Please provide the Chemical Safety Unit with a signed statement giving the reason why it is not to be renewed. If you have sold/vacated the site please provide the name and address of the new owner/occupier so we may contact them.

Yours faithfully

Chief Inspector of Dangerous Goods.

Register No. 10000 Mage 1. INFLAMMABLE LIQUID ACT, 1915 (AS AMENDED) Application for Registration of Premises or Store Licence under Division alteration or amendment of any such Registration or Licence, for the keeping of Inflammable Liquid and/or Dangerous or for the transfer Goods, in accordance with the provisions of the Inflammable Liquid Act, 1915 (as amended), for the ensuing year. DIRECTIONS (14.5)
 Applications must be forwarded to the Chief Inspector of Inflammable Liquid, Explosives Department, Box R.216, Royal Exchange Sydney, N.S.W. 2000 and must be accompanied by the prescribed fee, as set out hereunder: Registration of Premises (Fee \$3.00 p.a.) - For quantities not exceeding 300 gallons of mineral oil and 100 gallons of 500 gallons of mineral spirit, if kept together; or 800 gallons of mineral oil and 100 gallons of mineral spirit, if kept separate depots; or spirit, if mineral spirit is kept in an underground tank depot.
 In addition to, or in lieu of the above, similar quantities of Dangerous Goods of Classes 1 and 2 may be kept under the like conditions; reading Dangerous Goods of Class 1 for the words Mineral Spirit and Dangerous Goods of Class 2 for the words Mineral Oil. CSwords Mineral Oil. Store License, Div. A (Fee, \$6.50 p.a.) - For quantities in excess of those stated above, but not exceeding 4,000 gallons mineral oil and/or mineral spirit, and/or Dangerous Goods of Classes 1, 2 and 9. Store License, Div. B (Fee, See Regulation 7) - For quantities exceeding 4,000 gallons of mineral spirit, and/or dangerous goods of Classes 1 and 2, and/or dangerous goods of Class 3. For the keeping of Dangerous Goods of Classes 3 and/or 4. (\$15.00 p.a.). Fees for the keeping of inflammable liquid and dangerous goods in excess of the above stated quantities and also for Liquid plaum Gas storage are set out in Regulation 7. Petroleum Gas storage are set out in Regulation 7. and B16006 (11) 1. Name of occupier including full christian names. CUMBERLAND NEWSPAPERS 6.1 Trading Name (if any) 3. Locality of the premises in which the depot 142 No. or Name\_\_\_ or depots are situated MACQUARIE PARRAMATTA Postcode 2050 4. Postal address 5. Occupation 6. Nature of premises (dwelling, garage etc.) Particulars of construction of depots and maximum quantities of inflammable liquid and/or Dangerous Goods to be kept at any PLEASE ATTACH PLAN OF PREMISES Construction of depots\* Inflammable liquid Dangerous goods Depot No. Walls Mineral Mineral Class Class Class Roof Floor Closs Class Class oil gallons spirit 2 3 5A 4 gallons gallons Ib gallons cu ft vater gal gallons l 1 A 5000 2 1000 1000 3 FUL ,1 4 liment V 5 6 7 HINI 15-8 HY S

\* If product is kept in tanks describe depots as underground or aboveground tan CUMBERLAND NEWSPAPERS PTY. LIBITEN

120

Signature of gaplicant

276

Date of application  $\frac{2}{3}$ ,  $\frac{3}{12}$ 

9

10

CERTIFICATE OF INSPECTION

|                                                                                                                                                  |                                                                                                  | FOUPMENT REQU                                                                                                           | IRED                                                                    |                                                             |                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------|
| Product                                                                                                                                          | Single/Dual                                                                                      | Manual/Meter                                                                                                            | No.                                                                     | Tauks                                                       | No.                              |
| alay is more                                                                                                                                     |                                                                                                  |                                                                                                                         |                                                                         | James                                                       | 1                                |
| and and an other states of the                                                                                                                   |                                                                                                  | a service and the service of the                                                                                        |                                                                         |                                                             |                                  |
|                                                                                                                                                  |                                                                                                  |                                                                                                                         |                                                                         |                                                             |                                  |
|                                                                                                                                                  |                                                                                                  |                                                                                                                         |                                                                         |                                                             |                                  |
|                                                                                                                                                  | ELECTR                                                                                           | IC METER FUMPS: SI                                                                                                      | ECIAL DE                                                                | LAND CONTRACT                                               | boord                            |
| electrical power con                                                                                                                             | nected?                                                                                          | A.C. or D.C.                                                                                                            | - Vo                                                                    | oltage (Refer to Switch                                     | nooaru /                         |
| istance from Pump t                                                                                                                              | o Switchboard                                                                                    |                                                                                                                         |                                                                         |                                                             |                                  |
| nower available at j                                                                                                                             | pump? (Conversion N                                                                              | fanual to Meter)                                                                                                        |                                                                         |                                                             | de sector m                      |
| OTE: G.F. assume<br>ANNOT BE INST.<br>dual must have its                                                                                         | s obligation to CON<br>ALLED UNLESS SV<br>own circuit fuse: Sir                                  | NECT to switchboard<br>WITCHBOARD CAPAC<br>Igle 42 Amps. — Dual 9                                                       | only: Be c<br>CITY IS SUI<br>Amps.                                      | FFICIENT. Each pun                                          | np whether si                    |
| e certain client und                                                                                                                             | erstands HE must ar                                                                              | range for any necessary                                                                                                 | adjustments                                                             | to the switchboard.                                         |                                  |
| istance from Pump<br>Explosives Regulatio<br>Estance from Tank/s<br>Vill Tank/s be insid                                                         | Block to Tank/s<br>ns provide that the F<br>s to Nearest Wall<br>e Building?                     | Distance<br>ill Point cannot be inside<br>40<br>If so, under what su<br>present surface (Earth,                         | e from Tang<br>a building o<br>Height o<br>urface (wood<br>Concrete, gi | k/s to Fill Point/s<br>or within 5 feet of a doc<br>of Wall | orway or wind                    |
| 12932/5 10 00 0005                                                                                                                               | No building com                                                                                  | •                                                                                                                       |                                                                         | 2                                                           |                                  |
|                                                                                                                                                  | IL.                                                                                              | OCAL COUNCIL REQ                                                                                                        | UIREMENT                                                                | S                                                           | ana (1997) - 1997 - 1997 - 1997  |
| Name of Municipali<br>Has Council Permit<br>Are there any specia                                                                                 | ty r<br>been obtained?<br>I council requirement                                                  | OCAL COUNCIL REQ                                                                                                        | UIREMENT                                                                | S                                                           |                                  |
| Name of Municipali<br>Has Council Permit<br>Are there any specia<br>Prepare below Sketc<br>Company Pumps in<br>be included.                      | ty r<br>been obtained?<br>I council requirement<br>th Plan of Driveway<br>relation to the Buildi | Area showing details of Ing. Frontages of propert                                                                       | UIREMENT<br>Pump; Tank<br>y, distance b                                 | S<br>and Fill Point includir<br>etween pumps, width o       | ng location of<br>f driveways, e |
| Name of Municipali<br>Has Council Permit<br>Are there any specia<br>Propare below Sketc<br>Company Pumps in<br>be included.<br>Show Sincle Pumps | ty r<br>been obtained?<br>I council requirement<br>th Plan of Driveway<br>relation to the Buildi | Area showing details of Ing. Frontages of propert                                                                       | UIREMENT<br>Pump; Tank<br>y, distance be<br>Pumps                       | S<br>and Fill Point includin<br>etween pumps, width o       | ng location of<br>f driveways, e |
| Name of Municipali<br>Has Council Permit<br>Are there any specia<br>Propate below Sketo<br>Company Pumps in<br>be included.<br>Show Single Pumps | tyr<br>been obtained?<br>I council requirement<br>th Plan of Driveway<br>relation to the Buildi  | Area showing details of<br>ng. Frontages of propert<br>Dual                                                             | UIREMENT<br>Pump, Tank<br>y, distance by<br>Pumps                       | S<br>and Fill Point includin<br>etween pumps, width o       | ng location of<br>f driveways, e |
| Name of Municipali<br>Has Council Permit<br>Are there any specia<br>Propare below Sketo<br>Company Pumps in<br>be included.<br>Show Single Pamps | ty r<br>been obtained?<br>I council requirement<br>th Plan of Driveway<br>relation to the Buildi | Area showing details of Ing. Frontages of propert                                                                       | UIREMENT<br>Pump; Tank<br>y. distance be<br>Pumps                       | S<br>and Fill Point includin<br>etween pumps, width o       | ng location of<br>f driveways, e |
| Name of Municipali<br>Has Council Permit<br>Are there any specia<br>Propare below Sketo<br>Company Pumps in<br>be included.<br>Show Single Pumps | tyr<br>been obtained?<br>I council requirement<br>th Plan of Driveway<br>relation to the Buildi  | Area showing details of<br>ng. Frontages of propert<br>Dual                                                             | UIREMENT<br>Pump; Tank<br>y, distance be<br>Pumps                       | and Fill Point includin<br>etween pumps, width o            | ng location of<br>f driveways, e |
| Name of Municipali<br>Has Council Permit<br>Are there any specia<br>Propate below Sketo<br>Company Pumps in<br>be included.<br>Show Single Pumps | ty r<br>been obtained?<br>I council requirement<br>th Plan of Driveway<br>relation to the Buildi | Area showing details of Ing. Frontages of propert                                                                       | UIREMENT                                                                | S<br>and Fill Point includin<br>etween pumps, width o       | ng location of<br>f driveways, e |
| Name of Municipali<br>Has Council Permit<br>Are there any specia<br>Propare below Sketo<br>Company Pumps in<br>be included.<br>Show Single Pumps | tyr<br>been obtained?<br>I council requirement<br>th Plan of Driveway<br>relation to the Buildi  | Area showing details of propert<br>Dual                                                                                 | UIREMENT<br>Pump; Tank<br>y, distance b<br>Pumps                        | S<br>and Fill Point includin<br>etween pumps, width o       | ng location of<br>f driveways, e |
| Name of Municipali<br>Has Council Permit<br>Are there any specia<br>Propate below Sketo<br>Company Pumps in<br>be included.<br>Show Single Pamps | tyr<br>been obtained?<br>I council requirement<br>th Plan of Driveway<br>relation to the Buildi  | Area showing details of Ing. Frontages of propert                                                                       | UIREMENT<br>Pump, Tank<br>y, distance by<br>Pumps                       | S<br>and Fill Point includin<br>etween pumps, width o       | ng location of<br>f driveways, e |
| Name of Municipali<br>Has Council Permit<br>Are there any specia<br>Propare below Sketo<br>Company Pumps in<br>be included.<br>Show Single Pumps | tyr<br>been obtained?<br>I council requirement<br>th Plan of Driveway<br>relation to the Buildi  | Area showing details of propert<br>Dual                                                                                 | UIREMENT<br>Pump; Tank<br>y, distance b<br>Pumps                        | and Fill Point includin<br>etween pumps, width o            | ng location of<br>f driveways, e |
| Name of Municipali<br>Has Council Permit<br>Are there any specia<br>Propate below Sketo<br>Company Pumps in<br>be included.<br>Show Sing's Pamps | tyr<br>been obtained?<br>I council requirement<br>th Plan of Driveway<br>relation to the Buildi  | Area showing details of Ing. Frontages of propert                                                                       | UIREMENT                                                                | S<br>and Fill Point includin<br>etween pumps, width o       | ng location of<br>f driveways, e |
| Name of Municipali<br>Has Council Permit<br>Are there any specia<br>Propate below Sketo<br>Company Pumps in<br>be included.<br>Show Single Pumps | tyr<br>been obtained?<br>I council requirement<br>th Plan of Driveway<br>relation to the Buildi  | Area showing details of Ing. Frontages of propert<br>Dual                                                               | UIREMENT<br>Pump; Tank<br>y, distance b<br>Pumps                        | S<br>and Fill Point includin<br>etween pumps, width o       | ng location of<br>f driveways, e |
| Name of Municipali<br>Has Council Permit<br>Are there any specia<br>Prepare below Sketo<br>Company Pumps in<br>be included.<br>Show Single Pamps | tyr<br>been obtained?<br>I council requirement<br>th Plan of Driveway<br>relation to the Buildi  | Area showing details of ng. Frontages of propert Dual Pump                                                              | UIREMENT                                                                | S<br>and Fill Point includin<br>etween pumps, width o       | ng location of<br>f driveways, e |
| Name of Municipali<br>Hus Council Permit<br>Are there any specia<br>Propare below Sketo<br>Company Pumps in<br>be included.<br>Show Single Pumps | tyr<br>been obtained?<br>I council requirement<br>th Plan of Driveway<br>relation to the Buildi  | Area showing details of Ing. Frontages of propert                                                                       | UIREMENT                                                                | S<br>and Fill Point includin<br>etween pumps, width o       | ng location of<br>f driveways, e |
| Name of Municipali<br>Has Council Permit<br>Are there any specia<br>Propate below Sketo<br>Company Pumps in<br>be included.<br>Show Sing's Pumps | ty r<br>been obtained?<br>I council requirement<br>th Plan of Driveway<br>relation to the Buildi | Area showing details of ng. Frontages of propert Dual Rame Rame Rame Rame Rame Rame Rame Rame                           | UIREMENT                                                                | S<br>and Fill Point includin<br>etween pumps, width o       | ng location of<br>f driveways, e |
| Name of Municipali<br>Has Council Permit<br>Are there any specia<br>Propate below Sketo<br>Company Pumps in<br>be included.<br>Show Single Pumps | tyr<br>been obtained?<br>I council requirement<br>th Plan of Driveway<br>relation to the Buildi  | Area showing details of Ing. Frontages of propert<br>Dual                                                               | UIREMENT                                                                | S<br>and Fill Point includin<br>etween pumps, width o       | ng location of<br>f driveways, e |
| Name of Municipali<br>Has Council Permit<br>Are there any specia<br>Propate below Sketo<br>Company Pumps in<br>be included.<br>Show Sing's Pamps | ty r<br>been obtained?<br>I council requirement<br>th Plan of Driveway<br>relation to the Buildi | Area showing details of Ing. Frontages of propert<br>Dual<br>Para<br>Para<br>Para<br>Para<br>Para<br>Para<br>Para<br>Pa | UIREMENT                                                                | and Fill Point includin<br>etween pumps, width o            | ng location of<br>f driveways, e |
| Name of Municipali<br>Has Council Permit<br>Are there any specia<br>Prepare below Sketo<br>Company Pumps in<br>be included.<br>Show Single Pumps | tyr<br>been obtained?<br>I council requirement<br>th Plan of Driveway<br>relation to the Buildi  | Area showing details of Ing. Frontages of propert<br>Dual                                                               | UIREMENT                                                                | S and Fill Point includin etween pumps, width o             | ng location of<br>f driveways, e |
| Name of Municipali<br>Has Council Permit<br>Are there any specia<br>Prevate below Sketo<br>Company Pumps in<br>be included.<br>Show Single Pumps | ty r<br>been obtained?<br>I council requirement<br>th Plan of Driveway<br>relation to the Buildi | Area showing details of ing. Frontages of propert<br>Dual<br>Para<br>Para<br>Para<br>Concert<br>Soore Ga<br>Titan       | UIREMENT                                                                | and Fill Point includin<br>etween pumps, width o            | ng location of<br>f driveways, e |
| Name of Municipali<br>Has Council Permit<br>Are there any specia<br>Prepare below Sketo<br>Company Pumps in<br>be included.<br>Show Single Pumps | tyr<br>been obtained?<br>I council requirement<br>th Plan of Driveway<br>relation to the Buildi  | Area showing details of ing. Frontages of propert<br>Dual                                                               | UIREMENT                                                                | and Fill Point includin<br>etween pumps, width o            | ng location of<br>f driveways, e |

And the Quality hades

ġ,

| Register No.                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| INFLAMMABLE LIQUID ACT, 1915 (AS AMENDED)                                                                                                                                                                                                                                                                          |
| Application for Registration of Premises or Store License under Division                                                                                                                                                                                                                                           |
| Inflammable Liquid-                                                                                                                                                                                                                                                                                                |
| Mineral Oil—includes kerosene, mineral turpentine and white spirit (for cleaning), and compositions containing same.<br>Mineral Spirit—includes petrol, benzene, benzolene, benzol and naphtha, and compositions containing same.                                                                                  |
| Dangerous Goods-                                                                                                                                                                                                                                                                                                   |
| Closs I.—Acetone, amyl acetate, butyl acetate, carbon bisulphide; any combination of substances of an inflammable character suitable for<br>use as an industrial solvent and having a true flashing point of less than 73 degrees Fahrenheit.                                                                      |
| Closs 2.—Nitro-cellulose (also known as "pyroxylin" and "collodion cotton") moistened with an alcohol, butyl alcohol (also known as "butanol"), methylated spirits, vegetable turpentine; and any liquid or solid containing methylated spirits, having a true flathing point of less than 150 degrees Fahrenheit. |
| Class 3Nitro-cellulose product.                                                                                                                                                                                                                                                                                    |
| Class 4Compressed or dissolved acetylene contained in a porous substance Correct to 19/11/68                                                                                                                                                                                                                       |
| DIRECTIONS                                                                                                                                                                                                                                                                                                         |
| I. Applications must be forwarded to the Shief Inspector of Inflammable Liquid, Explosives Department, Department of Mine., Sydney, and must be accompanied by the prescribed fee, as set out hereunder:-                                                                                                          |

Registration of Premises (Fee \$ 3.00 p.a.) —For quantities not exceeding 300 gallons of mineral oil and 100 gallons of mineral spirit, if kept in separate depots; or 800 gallons of mineral spirit, if kept in an underground tank depot; or 800 gallons of mineral oil and 500 gallons of mineral spirit, if mineral spirit, if mineral spirit is kept in an underground tank depot; or 800 gallons of mineral oil and 500 gallons of mineral spirit.

ground tank depot. In addition to, or in lieu of the above, similar quantities of Dangerous Goods of Classes 1 and 2 may be kept under the like conditions; reading Dangerous Goods of Class 1 for the words Mineral Spirit and Dangerous Goods of Class 2 for the words Mineral Oil. Store License, Div. A (Fee, \$6.50 p.a.)....For quantities in excess of those stated above, but not exceeding 4,000 gallors mineral oil and/or mineral spirit, and/or Dangerous Goods of Classes 1 and 2.

Store License, Div. B (Fees, See Regulation 7).—For quantities exceeding 4,000 gallons of mineral and/or mineral spirit, and/or dangerous goods of Classes 1 and 2, and/or dangerous goods of Classes 3. For the keeping of Dangerous Goods of Classes 3 and/or 4. (\$15.00 p.a.)

2. The certificate of inspection at foot hereof must be signed by an inspector under the inflammable Liquid Act, 1915 (as amended), or Police Officer, or other officer duly authorised in that behalf, and where the premises are situated outside the Metropolitan Area of Sydney, it is requested that such certificate be obtained prior to forwarding application.

| STA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| the second secon |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|              | Con          | Inflamma | ble Liquid                               | Dangerous Goods              |                           |                       |                       |                   |                        |
|--------------|--------------|----------|------------------------------------------|------------------------------|---------------------------|-----------------------|-----------------------|-------------------|------------------------|
| Depot<br>No. | Walls        | Roof     | Floor                                    | Mineral<br>Spirit<br>Gallons | Mineral<br>Oil<br>Gallons | Class<br>I<br>Gallons | Class<br>2<br>Gallons | Class<br>3<br>Ib. | Class<br>4<br>cub. ft. |
| 1            | lhelight     | ound I   | and;                                     | 1000                         |                           |                       |                       |                   |                        |
| 2            | Film Of      | Film     | leath                                    | _                            | 88                        | 0                     |                       |                   |                        |
| 3            |              |          |                                          |                              |                           |                       |                       |                   |                        |
| 4            |              |          |                                          |                              |                           |                       |                       |                   |                        |
| 5            |              |          | -                                        |                              |                           | DUR                   | 17- 60.0              |                   | = A/c                  |
| 6            |              |          | -                                        |                              |                           | 1000                  | 66                    |                   |                        |
| 7            |              |          |                                          |                              |                           |                       |                       | 22                | 0/10                   |
| 8            |              |          |                                          |                              |                           | (Date                 | -                     | 201               | 2/6/                   |
| 9            |              |          |                                          |                              |                           | Recei                 | d Nor                 |                   | <u>/</u> 6             |
| 10           |              |          |                                          |                              | CO                        | MBERLAND              | NEWSPA                | PERS PT           | Y. LIMITED             |
|              |              |          | an a | Cignoture of                 | A                         | K FA                  | Da                    | an                |                        |
| ate of       | Application  | 19       | -12-106                                  | Portal                       | Address                   | PO                    | RCY                   | 211               | Store                  |
|              | rppireaction |          |                                          |                              | Address_                  | PAI                   | RAN                   | ATI               | TA                     |
|              | 1 D          | 1        | CERTIFICATE                              | OF INSPECT                   |                           |                       | 215                   | 0                 |                        |
|              | A fear       | al B     | SARIN                                    | *                            | heing                     | an Incoa              | ctor unde             | e eho lui         | lemme bite             |

Register No.\_

#### INFLAMMABLE LIQUID ACT, 1915 (AS AMENDED)

Application for Registration of Premises or Store License under Division\_ or for the transfer, alteration or amendment of any such Registration or License, for the keeping of inflammable Liquid and/or Dangerous Goods, in accordance with the provisions of the Inflammable Liquid Act, 1915 (as amended), for the ensuing year.

#### EXPLANATORY

Mineral Oil-includes kerosene, mineral turpentine and white spirit (for cleaning), and compositions containing same.

Mineral Spirit-includes petrol, benzene, benzolene, benzol and naphtha, and compositions containing same.

#### **Dangerous Goods-**

Inflammable Liquid-

FORM B

- Class 1.—Acetone, amyl acetate, butyl acetate, carbon bisulphide; any combination of substances of an inflammable character suitable for use as an industrial solvent and having a true flashing point of less than 73 degrees Fahrenheit.
- Class 2.—Nitro-cellulose (also known as "pyroxylin" and "collodion cotton") moistened with an alcohol, butyl alcohol (also known as "butanol"), methylated spirits, vegetable turpentine; and any liquid or solid containing methylated spirits, having a true flashing point of less than 150 degrees Fahrenheit. ner lique

Class 3.-Nitro-cellulose product.

Class 4.—Compressed or dissolved acetylene contained in a porous substance.

#### DIRECTIONS

1. Applications must be forwarded to the Chief Inspector of Inflammable Liquid, Explosives Department, 2nd Floor, 82 Pitt Street, Sydney (Box 48, G.P.O.), and must be accompanied by the prescribed fee, as set out hereunder:—

Registration of Premises (Fee £1 10s. Cd. p.a.).—For quantities not exceeding 300 gallons of mineral oil and 100 gallons of mineral spirit, if kept in separate depots; or 800 gallons of mineral oil and 100 gallons of mineral spirit, if kept in an underground tank depot; or 800 gallons of mineral oil and 500 gallons of mineral spirit, if mineral spirit is kept in an underground tank depot.

In addition to, or in lieu of the above, similar quantities of Dangerous Goods of Classes 1 and 2 may be kept under the like conditions; reading Dangerous Goods of Class 1 for the words Mineral Spirit and Dangerous Goods of Class 2 for the words Mineral Oil.

Store License, Div. A (Fee, £3 5s. 0d. p.a.).—For quantities in excess of those stated above, but not exceeding 4,000 gallons mineral oil and/or mineral spirit, and/or Dangerous Goods of Classes I and 2.

Store License, Div. B (Fees, See Regulation 7).—For quantities exceeding 4,000 gallons of mineral and/or mineral spirit, and/or dangerous goods of Classes 1 and 2, and/or dangerous goods of Class 3. For the keeping of Dangerous Goods of Classes 3 and/or 4. (£7 10s. 0d. p.a.).

2. The certificate of inspection at foot hereof must be signed by an Inspector under the Inflammable Liquid Act, 1915 (as amended), or Police Officer, or other officer duly authorised in that behalf, and where the premises are situated outside the Metropolitan Area of Sydney, it is requested that such certificate be obtained prior to forwarding application.

| I. Name in full of occupier                                              | toland Menspopers I to Klo.                                      |
|--------------------------------------------------------------------------|------------------------------------------------------------------|
| 2. Occupation                                                            | Printino                                                         |
| 3. Locality of the premises in which the depot or depots are situated    | No. or Name_142<br>Street Mic Quore St.<br>Town Parromatte       |
| 4. Nature of premises (Dwelling, Garage, Store, etc.)                    | - Printing Poland.                                               |
| 5. Will mineral spirit be kept in a prescribed underground tank depot?   |                                                                  |
| 6. Particulars of construction of depots and maximum quantities of infla | mmable liquid and/or Dangerous Goode to be kept at any one since |

ds to be kept at any one time.

|        | Construction of Depots |                  | Inflamma                                      | Inflammable Liquid                     |                                  | Dangerous Goods       |                       |                   |                        |
|--------|------------------------|------------------|-----------------------------------------------|----------------------------------------|----------------------------------|-----------------------|-----------------------|-------------------|------------------------|
| No.    | Walls                  | Roof             | Floor                                         | Mineral<br>Spirit<br>Gallons           | Mineral<br>Oil<br>Gallons        | Class<br>I<br>Gallons | Class<br>2<br>Gallons | Class<br>3<br>Ib. | Class<br>4<br>cub. ft. |
|        | andyroje               | and land         | h .                                           | 1000                                   |                                  |                       |                       |                   | 1                      |
| 2 _    | 3                      |                  |                                               |                                        |                                  |                       |                       |                   |                        |
| 3 _    |                        |                  |                                               |                                        |                                  |                       | PL                    | 10.               | KL                     |
| 4 _    |                        | -                |                                               |                                        |                                  |                       | Bublic 8              | 1                 | 1                      |
| 5 _    |                        |                  |                                               |                                        |                                  |                       | CUBIIC IN             | 97 805 UB 9<br>7  | Julks                  |
| 6 _    |                        |                  | -                                             |                                        |                                  |                       | were)                 | ~                 | 7.7,                   |
| 7 _    |                        |                  |                                               | _                                      |                                  |                       | Receip                | No                | 34.55                  |
| 8 _    |                        |                  |                                               |                                        |                                  |                       |                       |                   |                        |
| 9 -    |                        |                  |                                               | _                                      |                                  |                       |                       |                   |                        |
| 10 _   |                        |                  |                                               |                                        | CD1                              | BERLAND               | Witten                |                   |                        |
| ate of | Application            | 19/11/0<br>1 R 2 | من اور من | Signature of A<br>Postal<br>OF INSPECT | Applicant<br>Address<br><br>TION | Y. J.<br>P. C.        | A. M                  | 211               | Sector                 |

CUMBERLAND NEWSPAPER PTY LTD 142 MACQUARIE ST PARRAMATTA

.

٠



٠

5

• • • •

-ANE



APPENDIX C Notes Relating to this Report Field Work Results

# **Douglas Partners** Geotechnics · Environment · Groundwater

# NOTES RELATING TO THIS REPORT

#### Introduction

These notes have been provided to amplify the geotechnical report in regard to classification methods, specialist field procedures and certain matters relating to the Discussion and Comments section. Not all, of course, are necessarily relevant to all reports.

Geotechnical reports are based on information gained from limited subsurface test boring and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

#### **Description and Classification Methods**

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726, Geotechnical Site Investigations Code. In general, descriptions cover the following properties strength or density, colour, structure, soil or rock type and inclusions.

Soil types are described according to the predominating particle size, qualified by the grading of other particles present (eg. sandy clay) on the following bases:

| Soil Classification | Particle Size      |
|---------------------|--------------------|
| Clay                | less than 0.002 mm |
| Silt                | 0.002 to 0.06 mm   |
| Sand                | 0.06 to 2.00 mm    |
| Gravel              | 2.00 to 60.00 mm   |

Cohesive soils are classified on the basis of strength either by laboratory testing or engineering examination. The strength terms are defined as follows.

|                | Undrained          |  |
|----------------|--------------------|--|
| Classification | Shear Strength kPa |  |
| Very soft      | less than 12       |  |
| Soft           | 12—25              |  |
| Firm           | 25—50              |  |
| Stiff          | 50—100             |  |
| Very stiff     | 100—200            |  |
| Hard           | Greater than 200   |  |

Non-cohesive soils are classified on the basis of relative density, generally from the results of standard penetration tests (SPT) or Dutch cone penetrometer tests (CPT) as below:

| Relative Density | SPT<br>"N" Value<br>(blows/300 mm) | CPT<br>Cone Value<br>(q <sub>c</sub> — MPa) |
|------------------|------------------------------------|---------------------------------------------|
| Very loose       | less than 5                        | less than 2                                 |
| Loose            | 5—10                               | 2—5                                         |
| Medium dense     | 10—30                              | 5—15                                        |
| Dense            | 30—50                              | 15—25                                       |

Very dense greater than 50 greater than 25 Rock types are classified by their geological names. Where relevant, further information regarding rock classification is given on the following sheet.

#### Sampling

Sampling is carried out during drilling to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on colour, type, inclusions and, depending upon the degree of disturbance, some information on strength and structure.

Undisturbed samples are taken by pushing a thinwalled sample tube into the soil and withdrawing with a sample of the soil in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shear strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Details of the type and method of sampling are given in the report.

#### **Drilling Methods.**

The following is a brief summary of drilling methods currently adopted by the Company and some comments on their use and application.

**Test Pits** — these are excavated with a backhoe or a tracked excavator, allowing close examination of the in-situ soils if it is safe to descent into the pit. The depth of penetration is limited to about 3 m for a backhoe and up to 6 m for an excavator. A potential disadvantage is the disturbance caused by the excavation.

Large Diameter Auger (eg. Pengo) — the hole is advanced by a rotating plate or short spiral auger, generally 300 mm or larger in diameter. The cuttings are returned to the surface at intervals (generally of not more than 0.5 m) and are disturbed but usually unchanged in moisture content. Identification of soil strata is generally much more reliable than with continuous spiral flight augers, and is usually supplemented by occasional undisturbed tube sampling.

**Continuous Sample Drilling** — the hole is advanced by pushing a 100 mm diameter socket into the ground and withdrawing it at intervals to extrude the sample. This is the most reliable method of drilling in soils, since moisture content is unchanged and soil structure, strength, etc. is only marginally affected.

**Continuous Spiral Flight Augers** — the hole is advanced using 90—115 mm diameter continuous spiral flight augers which are withdrawn at intervals to allow



sampling or in-situ testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface, or may be collected after withdrawal of the auger flights, but they are very disturbed and may be contaminated. Information from the drilling (as distinct from specific sampling by SPTs or undisturbed samples) is of relatively lower reliability, due to remoulding, contamination or softening of samples by ground water.

**Non-core Rotary Drilling** — the hole is advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be determined from the cuttings, together with some information from 'feel' and rate of penetration.

**Rotary Mud Drilling** — similar to rotary drilling, but using drilling mud as a circulating fluid. The mud tends to mask the cuttings and reliable identification is again only possible from separate intact sampling (eg. from SPT).

**Continuous Core Drilling** — a continuous core sample is obtained using a diamond-tipped core barrel, usually 50 mm internal diameter. Provided full core recovery is achieved (which is not always possible in very weak rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation.

#### **Standard Penetration Tests**

Standard penetration tests (abbreviated as SPT) are used mainly in non-cohesive soils, but occasionally also in cohesive soils as a means of determining density or strength and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289, "Methods of Testing Soils for Engineering Purposes" — Test 6.3.1.

The test is carried out in a borehole by driving a 50 mm diameter split sample tube under the impact of a 63 kg hammer with a free fall of 760 mm. It is normal for the tube to be driven in three successive 150 mm increments and the 'N' value is taken as the number of blows for the last 300 mm. In dense sands, very hard clays or weak rock, the full 450 mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form.

 In the case where full penetration is obtained with successive blow counts for each 150 mm of say 4, 6 and 7

• In the case where the test is discontinued short of full penetration, say after 15 blows for the first 150 mm and 30 blows for the next 40 mm

as 15, 30/40 mm.

The results of the tests can be related empirically to the engineering properties of the soil.

Occasionally, the test method is used to obtain

samples in 50 mm diameter thin walled sample tubes in clays. In such circumstances, the test results are shown on the borelogs in brackets.

#### **Cone Penetrometer Testing and Interpretation**

Cone penetrometer testing (sometimes referred to as Dutch cone — abbreviated as CPT) described in this report has been carried out using an electrical friction cone penetrometer. The test is described in Australian Standard 1289, Test 6.4.1.

In the tests, a 35 mm diameter rod with a cone-tipped end is pushed continuously into the soil, the reaction being provided by a specially designed truck or rig which is fitted with an hydraulic ram system. Measurements are made of the end bearing resistance on the cone and the friction resistance on a separate 130 mm long sleeve, immediately behind the cone. Transducers in the tip of the assembly are connected by electrical wires passing through the centre of the push rods to an amplifier and recorder unit mounted on the control truck.

As penetration occurs (at a rate of approximately 20 mm per second) the information is plotted on a computer screen and at the end of the test is stored on the computer for later plotting of the results.

The information provided on the plotted results comprises: —

- Cone resistance the actual end bearing force divided by the cross sectional area of the cone expressed in MPa.
- Sleeve friction the frictional force on the sleeve divided by the surface area expressed in kPa.
- Friction ratio the ratio of sleeve friction to cone resistance, expressed in percent.

There are two scales available for measurement of cone resistance. The lower scale (0-5 MPa) is used in very soft soils where increased sensitivity is required and is shown in the graphs as a dotted line. The main scale (0-50 MPa) is less sensitive and is shown as a full line.

The ratios of the sleeve friction to cone resistance will vary with the type of soil encountered, with higher relative friction in clays than in sands. Friction ratios of 1%—2% are commonly encountered in sands and very soft clays rising to 4%—10% in stiff clays.

In sands, the relationship between cone resistance and SPT value is commonly in the range:—

 $q_c$  (MPa) = (0.4 to 0.6) N (blows per 300 mm)

In clays, the relationship between undrained shear strength and cone resistance is commonly in the range:  $q_c = (12 \text{ to } 18) c_u$ 

Interpretation of CPT values can also be made to allow estimation of modulus or compressibility values to allow calculation of foundation settlements.

Inferred stratification as shown on the attached reports is assessed from the cone and friction traces and from experience and information from nearby boreholes, etc. This information is presented for general guidance, but must be regarded as being to some extent interpretive. The test method provides a continuous profile of engineering properties, and where precise information on



soil classification is required, direct drilling and sampling may be preferable.

#### **Hand Penetrometers**

Hand penetrometer tests are carried out by driving a rod into the ground with a falling weight hammer and measuring the blows for successive 150 mm increments of penetration. Normally, there is a depth limitation of 1.2 m but this may be extended in certain conditions by the use of extension rods.

Two relatively similar tests are used.

- Perth sand penetrometer a 16 mm diameter flatended rod is driven with a 9 kg hammer, dropping 600 mm (AS 1289, Test 6.3.3). This test was developed for testing the density of sands (originating in Perth) and is mainly used in granular soils and filling.
- Cone penetrometer (sometimes known as the Scala Penetrometer) — a 16 mm rod with a 20 mm diameter cone end is driven with a 9 kg hammer dropping 510 mm (AS 1289, Test 6.3.2). The test was developed initially for pavement subgrade investigations, and published correlations of the test results with California bearing ratio have been published by various Road Authorities.

#### Laboratory Testing

Laboratory testing is carried out in accordance with Australian Standard 1289 "Methods of Testing Soil for Engineering Purposes". Details of the test procedure used are given on the individual report forms.

#### **Bore Logs**

The bore logs presented herein are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable, or possible to justify on economic grounds. In any case, the boreholes represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes, the frequency of sampling and the possibility of other than 'straight line' variations between the boreholes.

#### **Ground Water**

Where ground water levels are measured in boreholes, there are several potential problems;

- In low permeability soils, ground water although present, may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.

- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report.
- The use of water or mud as a drilling fluid will mask any ground water inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water observations are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

#### **Engineering Reports**

Engineering reports are prepared by qualified personnel and are based on the information obtained and on current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal (eg. a three storey building), the information and interpretation may not be relevant if the design proposal is changed (eg. to a twenty storey building). If this happens, the Company will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface condition, discussion of geotechnical aspects and recommendations or suggestions for design and construction. However, the Company cannot always anticipate or assume responsibility for:

- unexpected variations in ground conditions the potential for this will depend partly on bore spacing and sampling frequency
- changes in policy or interpretation of policy by statutory authorities
- the actions of contractors responding to commercial pressures.

If these occur, the Company will be pleased to assist with investigation or advice to resolve the matter.

#### **Site Anomalies**

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, the Company requests that it immediately be notified. Most problems are much more readily resolved when conditions are exposed than at some later stage, well after the event.

# Reproduction of Information for Contractual Purposes

Attention is drawn to the document "Guidelines for the Provision of Geotechnical Information in Tender Documents", published by the Institution of Engineers,


Australia. Where information obtained from this investigation is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. The Company would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

#### **Site Inspection**

The Company will always be pleased to provide engineering inspection services for geotechnical aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Copyright © 1998 Douglas Partners Pty Ltd

SURFACE LEVEL: 7.0 AHD EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 1 PROJECT No: 71682 DATE: 28/5/2010 SHEET 1 OF 1

| Γ   |           |      | Description                                                        | Deg          | gree of                               | U            | s     | Roc   | k<br>ath |      | Fracture       | Discontinuities                                   |       | San | npli     | ng & | In Situ Testing                                     |
|-----|-----------|------|--------------------------------------------------------------------|--------------|---------------------------------------|--------------|-------|-------|----------|------|----------------|---------------------------------------------------|-------|-----|----------|------|-----------------------------------------------------|
| RL  | Dep<br>(m | )    | of                                                                 |              | lanoring                              | Sraph        | -ow   | 151   |          | Wate | Spacing<br>(m) | B - Bedding J - Joint                             | q     | R.  | ore<br>% | 0%   | Test Results                                        |
| -   |           |      |                                                                    | N N N        | N N N N N N N N N N N N N N N N N N N | Ŭ            | N S   | Med   | 퇴원       |      | 0.10           | S - Shear D - Drill Br                            | eak 🗗 | -   | ٽ ٽ<br>ڀ | Ϋ́α, | Comments                                            |
| E   |           | 0.2  |                                                                    | 11           | iii.                                  | 2            | 11    | 11    | 11       |      |                |                                                   | A     |     |          |      | PID=1ppm                                            |
| E   | E         |      | FILLING - dark grey to black fine                                  | 11           |                                       | $\bigotimes$ |       | ŢÌ    | 11       |      | 1111           |                                                   |       |     |          |      |                                                     |
| E   |           | 0.6  | to medium grained, sand filling                                    |              |                                       | KX)          |       |       |          |      |                |                                                   | A     | 1   |          |      | PID=1ppm                                            |
|     |           |      | SAND - loose then medium dense,                                    | lii          | iî:                                   |              | 1     | ii    | ii       |      | i ii ii        |                                                   |       |     |          |      |                                                     |
| -9  | -1        |      | brown, medium grained sand, moist                                  |              |                                       |              |       |       |          |      |                |                                                   | A     | •   |          |      | PID=1ppm                                            |
|     |           |      |                                                                    | ii           |                                       |              | lii   | 11    | Ηł.      |      |                |                                                   | s     |     |          |      | 2,3,3                                               |
| E   |           |      |                                                                    |              | $\{ (1) \}$                           | . S          | L I   | 11    | II.      |      | 1111           |                                                   |       | _   |          |      | N = 0                                               |
| E   |           |      |                                                                    |              | 111                                   |              |       |       |          |      |                |                                                   |       |     |          |      |                                                     |
| - 0 | -2        |      |                                                                    | İİ           | iii.                                  |              | ii    | ii    | ii.      |      | i ii ii i      |                                                   |       |     |          |      |                                                     |
|     |           |      |                                                                    |              |                                       |              |       |       |          |      |                |                                                   |       |     |          |      |                                                     |
|     |           |      |                                                                    | ii           | itt                                   |              | H     | ii    |          |      |                |                                                   |       |     |          |      |                                                     |
| 1   |           |      |                                                                    |              |                                       |              | 11    | 11    |          |      | 11 11          |                                                   | -     | -   |          |      |                                                     |
|     |           | 2.8  | SAND modium dopper light and                                       |              |                                       |              |       |       |          |      |                |                                                   | s     |     |          |      | 5,6,6                                               |
|     | -3        |      | brown to orange brown, medium                                      | 11           | 111                                   |              | ij    | ii    | ii.      | i    | ii ii          |                                                   | -     | _   |          |      | N = 12                                              |
|     |           |      | grained sand, moist                                                |              | 111                                   |              |       |       |          |      |                |                                                   |       |     |          |      |                                                     |
|     |           |      | 2 dEmound                                                          | ii           | iii                                   |              | ii    | ii    | ii       | T    |                |                                                   |       |     |          |      |                                                     |
|     | ş.        |      | 3:45m. wet                                                         |              |                                       |              |       |       |          |      |                |                                                   |       |     |          |      |                                                     |
| : ; |           |      |                                                                    | 11           | iii                                   |              | ΪÍ    | 11    |          |      |                |                                                   |       |     |          |      |                                                     |
|     | -4        |      |                                                                    |              | 111                                   |              | 11    | []    | 11       |      |                |                                                   | -     | -   |          |      |                                                     |
|     |           |      |                                                                    |              | 111                                   |              |       |       |          |      |                |                                                   | s     |     | - 1      |      | 9,13,14                                             |
| -   |           |      |                                                                    | i i          | iii                                   |              | ii    | ii    | ii       | l    | ii ii          | 1                                                 | -     | -   |          |      | N = 27                                              |
|     |           |      |                                                                    |              |                                       |              |       |       |          |      | - 남 !! !       |                                                   |       |     |          |      |                                                     |
| -01 | -5        | 50-  |                                                                    | Ξi           | iiil                                  |              | ii    | i i   | i i l    | li   |                | Note: Unless otherwise                            |       |     |          |      |                                                     |
|     |           |      | LAMINITE/SILTSTONE - extremely                                     |              | :!! <b>!</b>                          | <u> </u>     | 11    | 11    |          | 1    |                | stated, rock is fractured<br>along rough planar   |       |     |          |      |                                                     |
| : : |           |      | laminite/siltstone                                                 | Η            | 114                                   | <u> - E</u>  | H     |       |          |      |                | bedding planes or joint                           | s     |     |          |      |                                                     |
| Ē   |           |      |                                                                    | 11           | []][                                  | 3-           | 1     | İ.    | i i      | - li | ii ii          | dipping 0 - 10                                    | c     | -   |          |      | 9,20/60mm                                           |
|     | ુક        | 5.8- | AMINITE - medium strength                                          | + 11         |                                       |              | 1     |       |          |      |                |                                                   | 3     |     | _        |      | refusal                                             |
| -   | 6         | 314  | moderately weathered, fragmented,                                  | i il         | <u>i i i </u>                         |              | i i   | i i   | i i      |      | _ii ii         | 5 8-6 1m: fragmented & slightly ironstained       | •     |     |          |      | PL(A) = 0,4MPa                                      |
| ţ   |           |      | brown laminite                                                     |              |                                       |              | 11    | 17    |          | 1    |                | <b>,</b>                                          |       |     |          |      |                                                     |
| ţ   |           |      | LAMINITE - high and high to very high strength, fresh stained then | ii.          | i i i i                               |              | 11    | 1 il  | 111      | li   | 5              | 6.28-6.97m: (x6) B0°,                             |       |     |          |      |                                                     |
| ł   |           |      | fresh, slightly fractured, light grey                              | 11           | ! ! ! !                               |              | 11    | 11    | 11       | I    | 1 <b>4</b> 11  | ronstained                                        |       |     |          |      | PL(A) = 2.7MPa                                      |
| F   | ~         |      | 40% fine grained sandstone                                         | H.           |                                       |              | 11    | 11    | 111      |      |                |                                                   |       |     |          |      |                                                     |
| Ē   |           |      | laminations                                                        | 11           |                                       |              | Ϊİ.   | i i'  | i i l    | li   | ii 🍯 i 🛛       |                                                   |       |     |          |      |                                                     |
| ł   |           |      |                                                                    |              |                                       |              | H     | H     |          |      |                |                                                   |       | 1   |          | 78   |                                                     |
| ŧ   |           |      |                                                                    | ii.          | iii                                   | •••          | ii    | ii    | i        | li   | ii Ki          | 7 61                                              |       |     |          | 10   |                                                     |
| ţ   |           |      |                                                                    |              |                                       |              | 11    | 11    | 11       | 1    |                | 7.51m; 355", rougn                                |       |     |          |      |                                                     |
| ÷   | 8         |      |                                                                    | i i i        | i i È                                 |              | 1 E   | i i.  | 111      | li   |                |                                                   |       |     |          | - 1  | PL(A) = 3.9MPa                                      |
|     |           |      |                                                                    | 111          |                                       |              | 11    | 11    | 11       | li   | i ji ji        |                                                   |       |     |          |      |                                                     |
| E   |           |      |                                                                    | 111          |                                       |              |       | : !   |          |      |                | 8,21m: J30°, rough                                |       |     |          |      |                                                     |
| ł   |           |      |                                                                    | 111          | i i 🗄                                 |              | ii.   | i i   | i i      | li   | FL ii h        | 8.39m: B5°, clay smear<br>8.5-8.55m: micro faults |       |     |          |      | PI(A) = 2.1 MPa                                     |
| ŧ   | 8.8       | 5-   | Bore discontinued at 8.85m                                         |              | -       =                             |              | 11    |       |          | 4    |                | 8.63m: J0°, smooth,                               |       |     |          |      | -, , <b>-</b> , , , , , , , , , , , , , , , , , , , |
| 2-1 | 9         |      |                                                                    | <u>î î i</u> | 111                                   |              | i i i | i i i | i i l    | i    |                |                                                   | -     |     |          |      |                                                     |
| E   |           |      |                                                                    |              |                                       |              |       |       |          |      |                |                                                   |       |     |          |      |                                                     |
| E   |           |      |                                                                    | iii          | iil                                   |              | iii   |       | il       | i.   | H H            |                                                   |       |     |          |      |                                                     |
| ŧ   |           |      |                                                                    |              |                                       |              |       |       |          | !    |                |                                                   |       |     |          |      |                                                     |
| t   |           |      |                                                                    | Ш            |                                       |              | 111   | u     | i.       | l    |                |                                                   |       |     |          |      |                                                     |

RIG: Scout 2

CLIENT:

PROJECT:

News Limited

LOCATION: 142-154 Macquarie Street, Parramatta

**Cumberland Newspapers Redevelopment** 

DRILLER: JS

LOGGED: SI

CASING: HQ to 5.8m

TYPE OF BORING: Solid flight auger to 5.5m; Rotary to 5.8m; NMLC-Coring to 8.85m WATER OBSERVATIONS: Free groundwater observed at 3.45m whilst augering REMARKS: \*Denotes field duplicate DUP4 collected



SURFACE LEVEL: 6.7 AHD EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 2 PROJECT No: 71682 DATE: 1/6/2010 SHEET 1 OF 1

| Γ   |    | -    | Description                                                          | L.C. | )eg  | gre    | e of | f D                                   |        | R          | oci        | k,         | T    | T    | Fracture     | е    | Discontinuities                                   | S    | ampl | ina & | In Situ Testing         |
|-----|----|------|----------------------------------------------------------------------|------|------|--------|------|---------------------------------------|--------|------------|------------|------------|------|------|--------------|------|---------------------------------------------------|------|------|-------|-------------------------|
| 님   | D  | epth | of                                                                   |      | ea   | ith    | erin | a hde                                 | 1      | Str        | eng<br>I_T | gth<br>T등I | ater |      | Spacing      | g    |                                                   | 0    |      | e _   | Test Results            |
|     |    | ,    | Strata                                                               | EW   | A H  | MM     | SE I | E G                                   | EX LOW |            | Medium     | Ele<br>Ele | V N  | 0.01 | 85 88<br>(m) | 1,00 | S - Shear D - Drill Break                         | Type | Core | ROF % | & Comments              |
| F   | ł  | 0.1  | TOPSOIL - dark grey, silty clay                                      |      | T    | ł      | П    | X                                     | 1      | Į.         |            | 11         |      | T    |              | Į.   |                                                   | A    | 1    | 1     | PID=1ppm                |
| Ē   |    | 0.6  | FILLING - dark grey, fine to<br>medium grained, sand filling with    |      | Ì    | Ì      |      | $\otimes$                             | İ      | i i<br>I I |            | ii         |      | i    | 111          | Ì    |                                                   |      |      |       | PID=1nnm                |
| -9  |    | 0.0  | some brick fragments                                                 |      | 1    |        | 11   |                                       |        |            |            |            |      | 1    |              | 1    |                                                   |      |      |       |                         |
|     | -1 |      | brown, fine to medium grained                                        |      |      |        |      |                                       |        |            |            |            |      | 1    |              |      |                                                   | A    |      |       | PID=1ppm                |
|     |    |      |                                                                      |      |      | Ì      | İİ   |                                       | Ì      | İİ         | Ì          | İİ         |      | i    | 111          | i I  |                                                   | S    |      |       | 5,5,6<br>N = 11         |
|     |    |      |                                                                      | ļ    | į    | i      | ij   |                                       | į      | ii         | 1          | ij         |      | į.   | 111          | i I  |                                                   |      | 1    |       |                         |
| Ē   |    |      |                                                                      | i    | i    | 1      |      |                                       | 1      |            | ł          |            |      | ľ    |              |      |                                                   |      |      |       |                         |
|     | -  |      |                                                                      | ł    |      | 1      |      |                                       | I      |            | 1          |            |      | ł    |              | !    |                                                   |      |      |       |                         |
|     |    |      |                                                                      | 1    | 1    |        |      |                                       | ł      |            |            |            |      |      | 11 1         | i    |                                                   |      |      |       |                         |
|     |    |      |                                                                      |      | Ì    | Ì      |      |                                       | į      | İ          | į          | ii         |      | ļ    | ii i         | i    |                                                   | s    | ]    |       | 4,8,14                  |
| Ē   | -3 | 2.9  | SANDY CLAY - very stiff, grey                                        | i.   | i    | į      | i i  | 77                                    | Ì      | ii         | į          |            |      | i    | Ηİ           | i    |                                                   |      | 4    |       | N = 22                  |
| ŧ   |    |      | sandy clay, moist                                                    | ļ    | i    | 1      |      | 1                                     | ł      |            | 1          |            |      | l    | 11 1         | i    |                                                   |      |      |       |                         |
| E   |    |      |                                                                      | i    | 1    |        |      | 1.                                    | ł      |            |            |            |      |      |              |      |                                                   |      |      |       |                         |
|     |    |      |                                                                      |      |      | ł      |      | 1                                     | ł      |            | 1          |            |      | ŀ    |              |      |                                                   |      |      |       |                         |
|     | -4 |      |                                                                      | ł    |      | I<br>I |      | 1                                     | 1      |            | İ          | İÌ         |      | l    |              | i    |                                                   |      |      |       |                         |
| ŧ   |    |      | From 4.3m: wet                                                       | İ    | i    | į.     | ii   | 1                                     | į.     | ii         | į          | ii         | Ŧ    | li - | 11 ji        | i    |                                                   |      |      |       |                         |
| EN  |    |      |                                                                      | ļ    | į    | i      |      | 1                                     | ÷.     |            | ļ          |            |      | l    | 11 1         |      |                                                   |      |      |       |                         |
|     | -5 |      |                                                                      |      | 1    |        |      | $\langle \rangle$                     | ł      |            | ļ          |            |      |      |              |      | Note: Unless otherwise                            |      |      |       |                         |
|     |    |      |                                                                      |      | <br> | 1      |      | 1                                     | Î      | <br>       | 1          |            |      |      |              |      | stated, rock is fractured<br>along rough planar   |      |      |       |                         |
| ŧŧ  |    | 5.5  | AMINITE/SILTSTONE avtromaly                                          |      |      | 1      |      | 4                                     |        |            | Ì          | ÌÌ         |      | i    | Ηİ           |      | bedding planes or joints<br>dipping 0°- 10°       |      |      |       |                         |
|     |    | 5.85 | low to very low strength, dark grey                                  | i    | i    | i      |      |                                       | L      | Ľ,         | į.         | ļ          |      | i,   | <u>ii ii</u> |      |                                                   | S    |      |       | 9,18,10/20mm<br>refusal |
|     | 6  |      | LAMINITE - medium then high                                          | I    | Ļ    |        |      |                                       | ł¢     | H          | l.         | i i        |      | Ľ    |              |      | 5.85-6.12m: fragmented<br>into 0.01-0.02mm        |      |      |       | PL(A) = 0.6MPa          |
|     |    |      | moderately weathered, fragmented                                     | ļ    | Ì    | İ      | i    | · · · · · · · · · · · · · · · · · · · | İ¢     | 4          | i.         | i i        |      | į    | Li ii        | A    | intervals, B0°,<br>ironstained & clay smear       |      |      |       |                         |
|     |    |      | grey brown laminite with                                             | į.   | į.   | IJ     | į    | ••••                                  | j T    | Ì          | 'n         |            |      | È    | 5            |      | "6.12-6.36m: (x6) B0°,<br>ironstained, clay smear |      |      |       | PL(A) = 1.4MPa          |
| E   | 7  | 6.8  | sandstone laminations. Some very                                     | Î    | ľ,   |        |      | <del></del>                           | 11     | ł          |            | ł.         |      | F    | ╊┓╎╎         |      | ironstained, rough                                |      |      |       |                         |
| E   |    |      | LAMINITE - high and high to very                                     | Ì    |      |        | i    | ••••                                  |        | l          | 1          |            |      |      | 1            |      | 6.51m: B10°, ironstained                          |      |      |       |                         |
| ÷   |    |      | high strength, fresh, slightly<br>fractured and unbroken, light grey | 1    |      |        |      | · · · · ·                             |        | -          | ł          | 1          |      |      |              |      | curved, ironstained,                              | С    | 100  | 59    |                         |
| 7   |    |      | to grey laminite with approximately 40% fine grained sandstone       | 1    |      |        | į.   | • • • •                               | į į    | Ì,         | Ì.         | ļ          |      | İ.   | 11 11        |      | 6.63m: B5°, ironstained                           |      |      |       | PL(A) = 3,7MPa          |
| F   | 8  |      | laminations                                                          | ij   | i    |        | ĵ.   |                                       | ij     | Ì          | į          | li.        |      | į –  | 11 11        |      | 6.79m: J40°, rough,                               |      |      |       |                         |
| Ē   |    |      |                                                                      |      |      | i      |      | · · · · ·                             | H      | 1          | ili        | 1          |      |      | 뷰 뭐          |      | 6.85m: J0°, ironstained                           |      |      |       |                         |
| a t |    |      |                                                                      |      |      | ł      |      | · · · · ·                             | H      | 1          |            |            |      |      | H            |      | 7.25m; J60°, rough                                |      |      |       |                         |
| F   |    | 8.8  | Bore discontinued at 8.8m                                            |      | 1    |        | -    |                                       |        | 1          | 11         | 1          |      |      |              | -    | 8.73m: J70°, rough                                |      |      |       | r'L(A) - ZIVIPa         |
| F   | 9  |      |                                                                      |      | 1    | 1      | 1    |                                       |        | İ          | 11         | į          |      | 1    | ЦЦ           |      |                                                   |      |      |       |                         |
| -   |    |      |                                                                      |      | i    | i      | i    |                                       |        | i          | İİ         | Ì          |      |      | ЦЦ           |      |                                                   |      |      |       |                         |
| ?-  |    |      |                                                                      | ij   | i    | ļ      |      |                                       |        | i          |            | i          |      |      |              |      |                                                   |      |      |       |                         |
| F   | _  |      |                                                                      | H    |      |        |      |                                       |        |            |            |            |      |      |              |      |                                                   |      |      |       |                         |

RIG: Scout 2

CLIENT:

PROJECT:

News Limited

LOCATION: 142-154 Macquarie Street, Parramatta

Cumberland Newspapers Redevelopment

DRILLER: JS

LOGGED: SI

CASING: HQ to 5.85m

TYPE OF BORING: Solid flight auger to 5.5m; Rotary to 5.85m; NMLC-Coring to 8.80m WATER OBSERVATIONS: Free groundwater observed at 4.3m whilst augering REMARKS:



SURFACE LEVEL: 6.7 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/--

BORE No: 3 PROJECT No: 71682 DATE: 2/6/2010 SHEET 1 OF 1

Degree of Rock Description Fracture Discontinuities Sampling & In Situ Testing Weathering Graphic Strength Spacing Depth Water He He H 00 묍 15 of ð % Test Results Core Rec. % %OD (m) B - Bedding (m) Type J - Joint ۶I & Strata S - Shear D - Drill Break 0.05 88 HW WAN Comments 0.06 BITUMINOUS CONCRETE PID=1ppm А 0.16 1 ROADBASE GRAVEL 1 1 FILLING - grey brown, fine to 1 1 11 A PID=1ppm medium grained, sand filling with 1 1 some brick fragments and a trace 1 of ash I A PID=1ppm 1 1 1 0,1,1 N = 2 1.25 s SAND - loose, light grey, fine to 1 1 Т T 1 1 ł 1 medium grained sand, moist 1 Т 1 1 1 1 1 1 1 Т Т 2 1 Т Т Ŧ 2.2 1 L Ŧ 1 CLAYEY SAND - medium dense. 1 1 1 1 1 grey brown to red brown, fine to 1.1. 1 1 1 medium grained clayey sand, moist 1.1. T 1 5 11 15 S 1 1 N = 261.1 1 3 1 1 1 Т 1 1 1 1 1 Т t 1 1 1 1 1 1 1 1 1 1 1 1 1.1. 2 Т I 5,6,6 4.24 S SAND - medium dense then dense, ŧ N = 12light grey, fine to medium grained 1 1.1 sand, moist Т E 1 1 5 1 1 1 1 1 11 Note: Unless otherwise 1 stated, rock is fractured T along rough planar bedding planes or joints dipping 0°- 10° 1 12.13.25 5.75 11 S CLAYEY SAND - dense, brown, I Ţ N = 38 1 1 fine to medium grained clayey -6 6.0 sand, wet 6.28 LAMINITE/SILTSTONE - extremely 6.28m: B0°, clay band low strength, dark grey laminite f 6.33-6.51m: (x5) B0°, with ironstone band clay veneer 6.6m: B0°, 5mm clay 6.73m: J10°, rough 6.82m: J15°, rough 6.98m: J40°, rough 7.05-7.36m: (x6) B0°, LAMINITE - medium strength, PL(A) = 0.4MPamoderately weathered then fresh 7 stained, fractured, grey brown laminite with approximately 30% fine grained sandstone laminations 7 38 .. ironstained PL(A) = 1.7MPa LAMINITE - high then high to very high strength, fresh stained then fresh, slightly fractured, light grey 7.54m: B0°, 2mm clay, ironstained 7.68m: B0°, 5mm clay С 100 65 to grey, laminite with approximately 8 40% fine grained sandstone T 8.05m: J35°, laminations ironstained, rough 8.2m: J50°, smooth, PL(A) = 2.3MPa concave 8.3m: J70°, rough 8.4m: J35°, rough 9 8.88m: J65°, rough PL(A) = 3.5MPa 9.25 Bore discontinued at 9.25m 1 Т ł 1 11 1 1111 11 FIFI T 11 11 1 1 1 11

RIG: Scout 2

CLIENT:

PROJECT:

News Limited

LOCATION: 142-154 Macquarie Street, Parramatta

Cumberland Newspapers Redevelopment

DRILLER: JS

LOGGED: SI

CASING: HQ to 6.2m

TYPE OF BORING: Solid flight auger to 5.5m; Rotary to 6.2m; NMLC-Coring to 9.25m WATER OBSERVATIONS: Free groundwater observed at 5.85m whilst augering REMARKS: A Auger sample SAMPLING & IN SITU TESTING LEGEND CHECKED



CLIENT:

L

PROJECT:

News Limited

LOCATION: 142-154 Macquarie Street, Parramatta

**Cumberland Newspapers Redevelopment** 

SURFACE LEVEL: 6.8 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/--

BORE No: 4 PROJECT No: 71682 DATE: 31/5/2010 SHEET 1 OF 2

| Γ                                     | Depth             | Description                                                                                                                                | Degree of<br>Weathering ₽ | Rock<br>Strength | Fracture       | Discontinuities                                                                                                          | S    | amp  | ling & | In Situ Testing                  |
|---------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|----------------|--------------------------------------------------------------------------------------------------------------------------|------|------|--------|----------------------------------|
| RI                                    | (m)               | of<br>Strata                                                                                                                               | ER SW MHW Grapt           |                  | Spacing<br>(m) | B - Bedding J - Joint<br>S - Shear D - Drill Break                                                                       | Type | Core | RQD %  | Test Results                     |
|                                       | 0.03              | BITUMINOUS CONCRETE<br>ROADBASE GRAVEL<br>CLAYEY SAND - loose, orange<br>brown to red brown, fine to medium<br>grained, clayey sand, moist |                           |                  |                |                                                                                                                          | A    |      |        | PID=1ppm<br>PID=1ppm<br>PID=1ppm |
|                                       | -2 2.0-           | SAND - medium dense, brown, fine<br>to medium grained sand with some<br>silt and clay, moist                                               |                           |                  |                |                                                                                                                          | s    |      |        | 3,4,7<br>N = 11                  |
|                                       | -3<br>3.75-<br>-4 | SAND - medium dense, brown,<br>medium grained sand, moist                                                                                  |                           |                  |                |                                                                                                                          | S    |      |        | 6,10,12<br>N = 22                |
| 1.1                                   | ·5 5.0-           | SAND - medium dense, light<br>brown, fine to medium grained<br>sand with some clay, wet                                                    |                           |                  |                |                                                                                                                          | S    |      |        | 9,9,14<br>N = 23                 |
| 0 1                                   | 7 6.9 -<br>7.2 -  | LAMINITE/SILTSTONE - extremely<br>low strength, grey brown                                                                                 |                           |                  |                | Note: Unless otherwise<br>stated, rock is fractured<br>along rough planar<br>bedding planes or joints<br>dipping 0°- 10° |      |      |        |                                  |
|                                       | 8                 | LAMINITE/SILTSTONE - extremely<br>low then extremely to very low<br>strength, extremely to highly<br>weathered, light grey brown           |                           |                  |                |                                                                                                                          | с    | 100  | 0      | pp = 200kPa                      |
| · · · · · · · · · · · · · · · · · · · | 8.7-              | LAMINITE - low then medium<br>strength, moderately weathered,<br>highly fractured to fractured group                                       |                           |                  |                | 8.31-8.69m: (x4) B10°-<br>25°, ironstained, clay<br>bands<br>8.8m: J55°- 85°, stepped<br>8.89m: B10° 25mm clay           | с    | 100  | 0      | pp = 280kPa                      |
|                                       | 9.15              | brown laminite with approximately<br>30% fine grained sandstone<br>laminations<br>LAMINITE - description next page                         |                           |                  |                | 8.89-9.15m; fragmented<br>into 0.02mm intervals,<br>ironstained<br>9.29-9.65m; (x3) B0°,<br>ironstained                  | с    | 100  | 87     | PL(A) = 0.8MPa<br>PL(A) = 1.5MPa |
| IG                                    | : Scout           | 2 DRILLE                                                                                                                                   | R:JS                      | LOGG             | ED: SI         | CASI                                                                                                                     |      |      | 7 2r   | ]                                |

 RIG: Scout 2
 DRILLER:JS
 LOGGED: SI

 TYPE OF BORING: Solid flight auger to 7.0m;
 Rotary to 7.2m;
 NMLC-Coring to 11.75m

 WATER OBSERVATIONS: Free groundwater observed at 5.0m whilst augering
 REMARKS:
 Class 18 uPVC groundwater monitoring well installed in borehole



SURFACE LEVEL: 6.8 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/--

BORE No: 4 PROJECT No: 71682 DATE: 31/5/2010 SHEET 2 OF 2

|                                                                                  | Depth | Description                                                                                                                                                                      | Degree of<br>Weathering |      | Rock<br>Strength                          | Fracture         | Discontinuities                                    | Sa   | ampli         | ng &     | In Situ Testing |
|----------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|-------------------------------------------|------------------|----------------------------------------------------|------|---------------|----------|-----------------|
| R C                                                                              | (m)   | of<br>Strata                                                                                                                                                                     | MH MAN S A              | Grap | Very Low<br>Aedium<br>Aedium<br>Kery High | (m)<br>ଅନ୍ୟ କ୍ଷଣ | B - Bedding J - Joint<br>S - Shear D - Drill Break | Type | Core<br>Rec % | RQD<br>% | Test Results    |
| · · · · · · · · · · · · · · · · · · ·                                            | 1     | LAMINITE - high strength, fresh,<br>slightly fractured then unbroken,<br>light grey to grey laminite with<br>approximately 30% fine grained<br>sandstone laminations (continued) |                         |      |                                           |                  | 10.65-10.9m: J75°- 85°,<br>slightly curved, rough  | с    | 100           | 87       | PL(A) = 2.2MPa  |
| 9 12<br>9 12<br>13<br>9 14<br>14<br>15<br>16<br>16<br>17<br>17<br>18<br>19<br>19 | 11.75 | Bore discontinued at 11.75m                                                                                                                                                      |                         |      |                                           |                  |                                                    |      |               |          |                 |

RIG: Scout 2

CLIENT:

PROJECT:

News Limited

LOCATION: 142-154 Macquarie Street, Parramatta

**Cumberland Newspapers Redevelopment** 

DRILLER: JS

LOGGED: SI

CASING: HQ to 7.2m

TYPE OF BORING: Solid flight auger to 7.0m; Rotary to 7.2m; NMLC-Coring to 11.75m WATER OBSERVATIONS: Free groundwater observed at 5.0m whilst augering Class 18 uPVC groundwater monitoring well installed in borehole REMARKS:

| A                      | SAMPLING & IN SIT<br>Auger sample                                                           | U TESTING LEGEND                                                                                                                                      | CHECKED                            | _ |   |                                                                    |
|------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---|---|--------------------------------------------------------------------|
| D<br>B<br>U,<br>W<br>C | Disturbed sample<br>Bulk sample<br>Bulk sample (x mm dia.)<br>Water sample<br>Core drilling | PID Photo ionisation detector<br>S Standard penetration test<br>PL Point load strength Is(50) MPa<br>V Shear Vane (kPa)<br>D Water seep ¥ Water level | Initials: RUO<br>Date: 22 - 7 - 10 | 9 | D | <b>Douglas Partners</b><br>Geotechnics · Environment · Groundwater |

CLIENT:

PROJECT:

News Limited

LOCATION: 142-154 Macquarie Street, Parramatta

Cumberland Newspapers Redevelopment

SURFACE LEVEL: 7.0 AHD EASTING: NORTHING:

DIP/AZIMUTH: 90°/--

BORE No: 5 PROJECT No: 71682 DATE: 31/5 - 1/6/2010 SHEET 1 OF 2

| Depth  | Description                                                                                                                   | Degree of<br>Weathering 글 | Rock<br>Strength                        | Fracture  | Discontinuities                                                                                                          | S    | amp  | ling 8 | In Situ Testing   |
|--------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------|------|------|--------|-------------------|
| (m)    | of<br>Strata                                                                                                                  |                           | Vate Vate Vate Vate Vate Vate Vate Vate | (m)       | B - Bedding J - Joint<br>S - Shear D - Drill Break                                                                       | Type | Core | RQD %  | Test Results      |
| Ē      | BITUMINOUS CONCRETE                                                                                                           |                           |                                         |           |                                                                                                                          | A    | +    | +      | PID=1ppm          |
| 0.4    | FILLING - dark grey, sand filling<br>with some brick, grass fragments,<br>ash and metal                                       |                           |                                         |           |                                                                                                                          | A    |      |        | PID=1ppm          |
| 1.25   |                                                                                                                               |                           |                                         |           |                                                                                                                          | A    | 1    |        | PID=1ppm<br>1,1,2 |
|        | CLAYEY SAND - loose, brown, fine<br>to medium grained, clayey sand,<br>moist                                                  |                           |                                         |           |                                                                                                                          |      |      |        | N = 3             |
| -2 2.0 | SAND - medium dense, red brown,<br>fine to medium grained sand with a<br>trace of silt and clay, moist                        |                           |                                         |           |                                                                                                                          |      |      |        |                   |
| -3     |                                                                                                                               |                           |                                         |           |                                                                                                                          | s    |      |        | 6,9,13<br>N = 22  |
|        |                                                                                                                               |                           |                                         |           |                                                                                                                          |      |      |        |                   |
| 4.2    | CLAYEY SAND - medium dense,<br>light grey brown and orange brown,<br>fine to medium grained clayey<br>sand moist to wet       |                           | <br>              <b>≭</b>              |           |                                                                                                                          | s    | -    |        | 6,7,12<br>N = 19  |
| -5     |                                                                                                                               |                           |                                         |           |                                                                                                                          |      |      |        | 1010              |
| -6     | SHALY CLAY - stiff, light grey to<br>dark grey, shaly clay, wet                                                               |                           |                                         |           |                                                                                                                          | S    |      |        | 4,8,12<br>N = 20  |
| -7     |                                                                                                                               |                           |                                         |           |                                                                                                                          |      |      |        |                   |
|        |                                                                                                                               |                           |                                         |           |                                                                                                                          | S    |      |        | 3,4,7<br>N = 11   |
| -8     |                                                                                                                               |                           |                                         |           | Note: Unless otherwise<br>stated, rock is fractured<br>along rough planar<br>bedding planes or joints<br>dipping 0°- 10° |      |      |        |                   |
| 8.6    | LAMINITE - very low strength, grey<br>laminite<br>LAMINITE - medium strength,                                                 |                           |                                         | ╅         | 8.6-9.15m: (x10) B0°,<br>clay veneer                                                                                     |      |      |        | PL(A) = 0.4MPa    |
|        | fresh, fractured to slightly fractured,<br>dark grey laminite with<br>approximately 20% fine grained<br>sandstone laminations |                           |                                         |           | 9.22m: J80°, rough<br>9.36m: B0°, 2mm clay<br>9.53m: J85°, rough                                                         | с    | 100  | 88     | PL(A) = 0.4MPa    |
| 9.8    | LAMINITE - description next page                                                                                              |                           | <b>H</b>                                | ii lii le | 9.67m: J35°, rough                                                                                                       |      |      |        |                   |

 RIG: Scout 2
 DRILLER:JS
 LOGGED: SI

 TYPE OF BORING: Solid flight auger to 5.5m;
 Rotary to 8.6m;
 NMLC-Coring to 11.65m

 WATER OBSERVATIONS: Free groundwater observed at 4.35m whilst augering
 REMARKS:
 Class 18 uPVC groundwater monitoring well installed in borehole



SURFACE LEVEL: 7.0 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/--

BORE No: 5 PROJECT No: 71682 DATE: 31/5 - 1/6/2010 SHEET 2 OF 2

| Γ                                        |       | Description                                                                          | Degree of Weathering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ر   | Rock<br>Strength                     | Fracture       | Discontinuities                                                                                                                                         | Sa | ampli | ng & | In Situ Testing                |
|------------------------------------------|-------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|------|--------------------------------|
| æ                                        | (m)   | of                                                                                   | Sraph Sraph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Log |                                      | Spacing<br>(m) | B - Bedding J - Joint                                                                                                                                   | be | ore % | 0.0  | Test Results                   |
| 4                                        |       | Strata                                                                               | M H M S H H M S H H M S H H M S H H M S H H M S H H M S H H M S H H M S H H M S H H M S H H M S H H M S H H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H M S H | 9   | Ex L<br>Very<br>Very<br>Very<br>Very | 0 05 0 100     | S - Shear D - Drill Break                                                                                                                               | T  | Sec   | R.   | ∝<br>Comments                  |
|                                          | 11 85 | laminite with approximately 30%<br>fine grained sandstone laminations<br>(continued) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                                      |                | 10m: J85°, rough<br>10.08m: J60°, stepped,<br>rough<br>10.16m: J45°, rough<br>10.6m: J35°, rough<br>10.8m: (x2) J35°, 75°,<br>rough<br>11m: J90°, rough | с  | 100   | 88   | PL(A) = 2MPa<br>PL(A) = 1.7MPa |
| ŧ                                        | 11.05 | Bore discontinued at 11.65m                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -   | iiiiii j                             | <u>ii ii</u>   |                                                                                                                                                         |    |       |      |                                |
| 97 97 97 97 97 97 97 97 97 97 97 97 97 9 | -12   |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                                      |                |                                                                                                                                                         |    |       |      |                                |
| 8-                                       | -15   |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                                      |                |                                                                                                                                                         |    |       |      |                                |
| 9                                        | - 16  |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                                      |                |                                                                                                                                                         |    |       |      |                                |
| -10                                      | - 17  |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                                      |                |                                                                                                                                                         |    |       |      |                                |
| -12                                      | 18    |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                                      |                |                                                                                                                                                         |    |       |      |                                |
|                                          |       |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                                      |                |                                                                                                                                                         |    |       |      |                                |

RIG: Scout 2

CLIENT:

PROJECT:

News Limited

LOCATION: 142-154 Macquarie Street, Parramatta

**Cumberland Newspapers Redevelopment** 

DRILLER: JS

LOGGED: SI

CASING: HQ to 8.6m

TYPE OF BORING: Solid flight auger to 5.5m;Rotary to 8.6m;NMLC-Coring to 11.65mWATER OBSERVATIONS: Free groundwater observed at 4.35m whilst augeringREMARKS:Class 18 uPVC groundwater monitoring well installed in borehole

| ADBU,℃ | SAMPLING & IN SIT<br>Auger sample<br>Disturbed sample<br>Buik sample<br>Tube sample (x mm dia.)<br>Water sample<br>Core drilling | U TESTING LEGEND<br>pp Pocket penetrometer (kPa)<br>PID Photo ionisation detector<br>S Standard penetration test<br>PL Point load strength Is(50) MPa<br>V Shear Vane (kPa)<br>D Water seep T Water level | CHECKED<br>Initials: RUO<br>Date: 12 - 7 - 10 | ( | D | Douglas Partners                       |
|--------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---|---|----------------------------------------|
| C      | Core drilling                                                                                                                    | ▷ Water seep                                                                                                                                                                                              | Date: 22 . T. IV                              |   |   | Geotechnics · Environment · Groundwate |

SURFACE LEVEL: 6.9 AHD EASTING: **NORTHING:** 

DIP/AZIMUTH: 90°/--

BORE No: 6 **PROJECT No: 71682** DATE: 25/5/2010 SHEET 1 OF 2

| Bruch Continue     Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second                                                                                                                                                                                                                                                                                                             | Testine       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| (m)       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata       Strata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Results       |
| 01M       BITUMINOUS CONCRETE       018/9/9/19/10       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | & Results     |
| A PIC<br>SAND - medium dense, brown, fine<br>a - 2<br>- 4 - 4<br>- 5<br>- 5<br>- 7<br>- 5<br>- 7<br>- 7<br>- 7<br>- 7<br>- 7<br>- 7<br>- 7<br>- 4<br>- 4<br>- 7<br>- 7<br>- 7<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4<br>- 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nments        |
| A PID<br>A PID<br>A A<br>PID<br>A A<br>S AND - medium grained sand, moist<br>A A<br>S AND - medium dense then loss,<br>prov. medium grained sand, wet<br>A B<br>A B<br>A B<br>A B<br>A B<br>A B<br>A B<br>A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =1ppm         |
| A millight brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>5.2<br>CLAYEY SAND - medium dense, frequencies of any strength, gave<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11<br>1.11 | -1            |
| 4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>5.2<br>CLAYEY SAND - medium dense,<br>pre-5<br>5.2<br>CLAYEY SAND - medium dense,<br>pre-7<br>7.5<br>LAMINITE - yery low strength new<br>5.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>LAMINITE - yery low strength new<br>5.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>LAMINITE - yery low strength new<br>5.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>LAMINITE - yery low strength new<br>5.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>LAMINITE - yery low strength new<br>5.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>LAMINITE - yery low strength new<br>5.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>LAMINITE - yery low strength new<br>5.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>LAMINITE - yery low strength new<br>5.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>LAMINITE - yery low strength new<br>5.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>LAMINITE - yery low strength new<br>5.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>LAMINITE - yery low strength new<br>5.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>SAND - medium dense then loose,<br>pre-7<br>7.5<br>SAND - medium dense then loose,<br>SAND - medium dense then loose,<br>SAND - medium dense then loose,<br>SAND - medium dense then loose,<br>SAND - medium dense then loose,<br>SAND - medium dense then loose,<br>SAND - medium dense then loose,<br>SAND - medium dense then loose,<br>SAND - medium dense then loose,<br>SAND - medium dense then loose,<br>SAND - medium dense then loose,<br>SAND - medium dense then loose,<br>SAND - medium dense then loose,<br>SAND - medium dense then loose,<br>SAND - medium dense                                                      | = i ppm       |
| 4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>5.2<br>CLAYEY SAND - medium dense, light gray to gray, fine to medium grained clayey sand, wet<br>7.<br>7.<br>7.<br>CLAYEY SAND - medium dense then loose, gray of clayer and the light gray to gray, fine to medium grained sand with a light gray to gray, fine to medium grained sand with a light gray to gray. The light gray to gray fine to medium grained sand with a light gray to gray. The light gray to gray fine to medium grained sand with a light gray to gray. The light gray to gray fine to medium grained sand with a light gray to gray. The light gray to gray fine to medium grained sand with a light gray to gray. The light gray to gray fine to medium grained sand with a light gray to gray. The light gray to gray fine to medium grained sand with a light gray to gray. The light gray to gray fine to medium grained sand with a light gray to gray. The light gray to gray fine to medium grained sand with a light gray to gray. The light gray to gray fine to medium grained sand with a light gray to gray. The light gray to gray fine to medium grained sand with a light gray to gray. The light gray to gray fine to medium grained sand with a light gray to gray. The light gray to gray fine to medium grained sand with a light gray to gray. The light gray to gray fine to medium gray to gray fine to medium grained sand with a light gray to gray. The light gray to gray fine to medium gray to gray. The light gray to gray fine to medium gray to gray fine to medium gray to gray. The light gray to gray fine to medium gray to gray fine to medium gray to gray. The light gray to gray fine to medium gray to gray fine to medium gray to gray fine to medium gray to gray. The light gray to gray fine to gray fine to medium gray to gray fine to medium gray to gray fine to gray fine to gray fine to gray fine to gray fine to gray fine to gray fine to gray fine to gray fine to gray fine to gray fine to gray fine to gray fine to gray fine to gray fine to gray fine                                                                                                                                                                                                                                                                           |               |
| A<br>S<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =1ppm         |
| A<br>S<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,4,4<br>√ = 8 |
| A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>S<br>A<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>S<br>A<br>A<br>S<br>A<br>S<br>A<br>A<br>S<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>S<br>A<br>A<br>A<br>S<br>A<br>A<br>A<br>S<br>A<br>A<br>A<br>S<br>A<br>A<br>A<br>S<br>A<br>A<br>A<br>S<br>A<br>A<br>A<br>A<br>S<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
| A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| A S S N<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet<br>A Am: light brown sand, wet                                                                                                                                                                                                              |               |
| 4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>5.2<br>CLAYEY SAND - medium dense,<br>light grey to grey, fine to medium<br>grained clayey sand, wet<br>7<br>7.5<br>LAMINITE - very low strength grey<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111                                        |               |
| 4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light grey to grey, fine to medium<br>grained clayey sand, wet<br>4.4m: light grey to grey, fine to medium<br>grained clayey sand, wet<br>4.4m: light grey to grey, fine to medium<br>grained clayey sand, wet<br>4.4m: light grey to grey, fine to medium<br>grey, medium grained sand with a<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey, fine to medium<br>4.4m: light grey to grey,                                                                                                                                                                                                                                 | 9,13          |
| 4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>4.4m:                                                                                                                                                                                                                | = 22          |
| 4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>5.2<br>CLAYEY SAND - medium dense, light grey to grey, fine to medium grained clayey sand, wet<br>6<br>6.5<br>SAND - medium dense then loose, grey, medium grained sand with a trace of clay, wet<br>7<br>7.5<br>LAMINITE - yery low strength grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
| 4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>5.2<br>CLAYEY SAND - medium dense, light grey to grey, fine to medium grained clayey sand, wet<br>6<br>6.5<br>SAND - medium dense then loose, grey, medium grained sand with a<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>LAMINITE - very low strength grey<br>7.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1                                                                       |               |
| 4       4.4m: light brown sand, wet       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
| 4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>5.2<br>CLAYEY SAND - medium dense, light grey to grey, fine to medium grained clayey sand, wet<br>6.5<br>SAND - medium dense then loose, grey, medium grained sand with a trace of clay, wet<br>7.5<br>LAMINITE - very low strength grey<br>LAMINITE - very low strength grey<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111<br>1.111                                                       |               |
| 4.4m: light brown sand, wet<br>4.4m: light brown sand, wet<br>5.2<br>CLAYEY SAND - medium dense, light grey to grey, fine to medium grained clayey sand, wet<br>6<br>6.5<br>SAND - medium dense then loose, grey, medium grained sand with a trace of clay, wet<br>7.5<br>LAMINITE - yery low strength grey.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| 4.4m: light brown sand, wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5,6           |
| 5       5.2       CLAYEY SAND - medium dense, light grey to grey, fine to medium grained clayey sand, wet       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 11          |
| 5       5.2       CLAYEY SAND - medium dense, light grey to grey, fine to medium grained clayey sand, wet       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 5.2       CLAYEY SAND - medium dense, light grey to grey, fine to medium grained clayey sand, wet       IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| 6       6.5       SAND - medium dense then loose, grey, medium grained sand with a trace of clay, wet       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       11111       111111       111111       111111 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
| 6       grained clayey sand, wet       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
| 6       6.5       SAND - medium dense then loose, grey, medium grained sand with a trace of clay, wet       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A 5           |
| 6.5 SAND - medium dense then loose, grey, medium grained sand with a trace of clay, wet<br>7 7 7.5 LAMINITE - yery low strength grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,5<br>= 9    |
| 6.5 SAND - medium dense then loose,<br>grey, medium grained sand with a<br>trace of clay, wet<br>7.5 LAMINITE - yery low strength, grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
| 6.5 SAND - medium dense then loose,<br>grey, medium grained sand with a trace of clay, wet<br>7.5 LAMINITE - yery low strength grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
| 7       grey, medium grained sand with a trace of clay, wet       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
| 7.5 LAMINITE - very low strength grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| 7.5 LAMINITE - very low strength grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| 7.5 LAMINITE - very low strength grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,4           |
| AMINITE - very low strength grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 6           |
| 7.7 brown laminite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
| LAMINITE - medium strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4MPa        |
| fragmented to fragtured area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| brown laminite with approximately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 30% tine grained sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7MPa        |
| 8.85 strength bands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
| -9 LAMINITE - high strength, fresh, sliphtly fresh, sliphtly freshured and unbroken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
| light grey to grey, laminite with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8MPa        |
| approximately 30% fine grained C 100 100 C 100 100 C 100 100 C 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
| 8.44-8.59m: (x3) B0°- 5°,<br>clay smear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
| 2- I I I I I I B.59m: B0°, 15mm clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |

RIG: Scout 2 DRILLER: JS TYPE OF BORING: Solid flight auger to 7.0m; Rotary to 7.7m; NMLC-Coring to 10.75m WATER OBSERVATIONS: Free groundwater observed at 4.4m whilst augering

**REMARKS:** \*Denotes duplicate DUP2 collected

CLIENT:

PROJECT:

**News Limited** 

LOCATION: 142-154 Macquarie Street, Parramatta

Cumberland Newspapers Redevelopment





LOGGED: SI



**Douglas Partners** Geotechnics · Environment · Groundwater

SURFACE LEVEL: 6.9 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/-- BORE No: 6 PROJECT No: 71682 DATE: 25/5/2010 SHEET 2 OF 2

|                                       |       |                                                                                                                                                                                  | Degree of  | -                                      |       | Pook                        |     |                               |                                                                                                               |      | _              |          |                 |
|---------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------|-------|-----------------------------|-----|-------------------------------|---------------------------------------------------------------------------------------------------------------|------|----------------|----------|-----------------|
|                                       | Depth | Description                                                                                                                                                                      | Weathering | Die n                                  | St    | rength                      | 5   | Fracture                      | Discontinuities                                                                                               | Sa   | Impli          | ng &     | In Situ Testing |
| R                                     | (m)   | of<br>Strata                                                                                                                                                                     | MAN MA     | Grap                                   | X Low | led ium<br>ligh<br>ery High | Wat | opacing<br>(m)<br>ଅନ୍ୟ କ୍ଷନ୍ତ | B - Bedding J - Joint<br>S - Shear D - Drill Break                                                            | Type | Core<br>tec. % | RQD<br>% | Test Results    |
|                                       | 10.75 | LAMINITE - high strength, fresh,<br>slightly fractured and unbroken,<br>light grey to grey, laminite with<br>approximately 30% fine grained<br>sandstone laminations (continued) |            | · · · ·<br>· · · ·<br>· · · ·<br>· · · |       |                             |     |                               | 18.7m: J, subvertical,<br>rough<br>8.89m: B0°, ironstained<br>8.89-10.06m: unbroken<br>(x11) drilling induced | с    | 100            | 100      | PL(A) = 2.9MPa  |
|                                       | -11   | Bore discontinued at 10.75m                                                                                                                                                      |            |                                        |       |                             |     |                               | 10.06m: J15°, rough<br>10.06-10.75m: (x10)<br>drilling induced breaks                                         |      |                |          |                 |
| · · · · · · · · · · · · · · · · · · · | -13   |                                                                                                                                                                                  |            |                                        |       |                             |     |                               |                                                                                                               |      |                |          |                 |
|                                       | - 15  |                                                                                                                                                                                  |            |                                        |       |                             |     |                               |                                                                                                               |      |                |          |                 |
| 6                                     | - 16  |                                                                                                                                                                                  |            |                                        |       |                             |     |                               |                                                                                                               |      |                |          |                 |
| -10                                   | -17   |                                                                                                                                                                                  |            |                                        |       |                             |     |                               |                                                                                                               |      |                |          |                 |
| 11.1.1.1.1.1.1.1                      | 18    |                                                                                                                                                                                  |            |                                        |       |                             |     |                               |                                                                                                               |      |                |          |                 |
| -13                                   | 19    |                                                                                                                                                                                  |            |                                        |       |                             |     |                               |                                                                                                               |      |                |          |                 |

RIG: Scout 2

CLIENT:

PROJECT:

**News Limited** 

LOCATION: 142-154 Macquarie Street, Parramatta

Cumberland Newspapers Redevelopment

DRILLER: JS

LOGGED: SI

CASING: HQ to 7.7m

TYPE OF BORING: Solid flight auger to 7.0m; Rotary to 7.7m; NMLC-Coring to 10.75m WATER OBSERVATIONS: Free groundwater observed at 4.4m whilst augering REMARKS: \*Denotes duplicate DUP2 collected



SURFACE LEVEL: 6.9 AHD **EASTING:** NORTHING:

BORE No: 7 PROJECT No: 71682 DATE: 25 - 27/5/2010 SHEET 1 OF 2

&

Comments

PID=1ppm

PID=1ppm

PID=1ppm 2,2,3 N = 5

3,5,12

N = 17

5,6,6

N = 12

5.6.6

N = 12

refusal

DIP/AZIMUTH: 90°/--Degree of Weathering Rock Strength Description Fracture Discontinuities Sampling & In Situ Testing Graphic Depth Water Spacing R of 00 Ex Low Very Low Medium High Ex High Test Results RoD % % (m) B - Bedding (m) J - Joint Type Core Strata S - Shear D - Drill Break MAN MAN AL 0.05 88 **BITUMINOUS CONCRETE** 0.13 0.25 ROADBASE GRAVEL A SAND - loose, brown, fine to A medium grained sand, moist A S 2 2.25 SAND - medium dense, orange brown, medium grained sand, moist S 3 1 3.7 CLAYEY SAND - medium dense, grey brown, fine to medium -4 1 grained, clayey sand, moist s 4 Y CLAY - stiff, dark grey clay with some fine grained sand, wet 5 S 6 1 6.75 SAND - brown, medium to coarse grained sand, wet 7 2 SHALY CLAY - very stiff to hard, grey brown, shaly clay with ironstone band (possibly extremely weathered rock) -8 Note: Unless otherwise stated, rock is fractured along rough planar bedding planes or joints - 9 dipping 0°- 10° 9.15 9,20/60mm LAMINITE - very low strength, grey S

#### RIG: Scout 2

9.4

9.93

laminite

LAMINITE/SILTSTONE - extremely

low to very low strength, extremely to highly weathered, grey brown

CLIENT:

PROJECT:

News Limited

LOCATION: 142-154 Macquarie Street, Parramatta

Cumberland Newspapers Redevelopment

#### DRILLER: JS

LOGGED: SI

9.4-9.93m; extremely

9.93-10.1m: fragmented

low strength band

CASING: HQ to 9.4m

С 100 52

TYPE OF BORING: Solid flight auger to 7.0m; Rotary to 9.4m; NMLC-Coring to 12.05m WATER OBSERVATIONS: Free groundwater observed at 4.7m whilst augering **REMARKS:** 

| B Bulk sample (x mm dia.)<br>W Water sample (x mm dia.)<br>W Water sample (x mm dia.)<br>W Sample (x mm dia.)<br>W Sample (x mm dia.)<br>W Water sample (x mm dia.)<br>W Sample (x mm dia.)<br>W Sample (x mm dia.)<br>W Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.)<br>M Sample (x mm dia.) | A Augers                                          | SAMPLING & IN SITU TE<br>sample pp<br>ed samole pr     | STING LEGEND<br>Pocket penetrometer (kPa)                                                     | CHECKED                        |                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------|------------------|
| C Core drilling V Sites value (kra)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B Bulk sa<br>U, Tube si<br>W Water s<br>C Core dr | ample S<br>ample (x mm dia.) PL<br>ample V<br>illing D | Standard penetration test<br>Point load strength Is(50) MPa<br>Shear Vane (kPa)<br>Water seep | Initials: 200<br>Date: 22-7-10 | Douglas Partners |

SURFACE LEVEL: 6.9 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/--

BORE No: 7 PROJECT No: 71682 DATE: 25 - 27/5/2010 SHEET 2 OF 2

|                                          | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Depth               | Description                                                                                                                                                                                                    | Degree of<br>Weathering | 2            | Rock<br>Strength | Fracture                    | Discontinuities                                                                                   | Sa   | mpli           | ng &     | In Situ Testing |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|------------------|-----------------------------|---------------------------------------------------------------------------------------------------|------|----------------|----------|-----------------|
| ā                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (m)                 | of<br>Strata                                                                                                                                                                                                   |                         | Graph<br>Log | Vate             | Spacing<br>(m)<br>ଅକ୍ଟିକ୍ଟେ | B - Bedding J - Joint<br>S - Shear D - Drill Break                                                | Type | Core<br>Rec. % | RQD<br>% | Test Results    |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | LAMINITE - medium then high<br>strength, moderately weathered<br>then fresh, slightly fractured and<br>unbroken, light grey brown then<br>light grey to grey, laminite with<br>approximately 30% fine greyingd |                         |              |                  |                             | 10.15m: B0°, 10mm<br>rock fragments<br>10.2m: B0°, clay smear<br>10.28m: J, subvertical,<br>rough | с    | 100            | 52       | PL(A) = 0.8MP   |
|                                          | La caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la caracteria de la car | 11                  | sandstone lamination (continued)                                                                                                                                                                               |                         |              |                  |                             | 11.7m: J45°, rough                                                                                | с    | 100            | 100      | PL(A) = 1.8MPa  |
| Ē                                        | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>12</sup> 12.05 | Bore discontinued at 12.05m                                                                                                                                                                                    |                         |              |                  |                             |                                                                                                   |      |                |          | PL(A) = 2MPa    |
|                                          | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t | 13                  |                                                                                                                                                                                                                |                         |              |                  |                             |                                                                                                   |      |                |          |                 |
| ere Kreener                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                  |                                                                                                                                                                                                                |                         |              |                  |                             |                                                                                                   |      |                |          |                 |
|                                          | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                   |                                                                                                                                                                                                                |                         |              |                  |                             |                                                                                                   |      |                |          |                 |
|                                          | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                   |                                                                                                                                                                                                                |                         |              |                  |                             |                                                                                                   |      |                |          |                 |
| -10                                      | - 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                   |                                                                                                                                                                                                                |                         |              |                  |                             |                                                                                                   |      |                |          |                 |
| 11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | - 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                   |                                                                                                                                                                                                                |                         |              |                  |                             |                                                                                                   |      |                |          |                 |
|                                          | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )                   |                                                                                                                                                                                                                |                         |              |                  |                             |                                                                                                   |      |                |          |                 |
| -13                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                |                         |              |                  |                             |                                                                                                   |      |                |          |                 |

RIG: Scout 2

CLIENT:

PROJECT:

News Limited

LOCATION: 142-154 Macquarie Street, Parramatta

Cumberland Newspapers Redevelopment

DRILLER: JS

LOGGED: SI

CASING: HQ to 9.4m

TYPE OF BORING: Solid flight auger to 7.0m; Rotary to 9.4m; NMLC-Coring to 12.05m WATER OBSERVATIONS: Free groundwater observed at 4.7m whilst augering REMARKS:



Rock

Strength

휜이림릴 (Plaine) (Aligner and a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a state of a sta

NO EN

SURFACE LEVEL: 6.9 AHD EASTING: NORTHING:

Discontinuities

D - Drill Break

B - Bedding J - Joint

S - Shear

BORE No: 8 **PROJECT No: 71682** DATE: 27 - 28/5/2010 SHEET 1 OF 2

Rec. %

Core

Type

A

A

A

S

Sampling & In Situ Testing

Test Results

&

Comments

PID=1ppm

PID=1ppm

PID=1ppm 2.2,2

N = 4

Cumberland Newspapers Redevelopment PROJECT: LOCATION: 142-154 Macquarie Street, Parramatta

Degree of Weathering

MAN NS SI Graphic

00

8

News Limited

Description

of

Strata

**BITUMINOUS CONCRETE** 

CLIENT:

Depth

(m)

0.25

0.75

2

DIP/AZIMUTH: 90°/--

Fracture

Spacing

(m)

59 88

Water

HgH HgH

ROADBASE GRAVEL FILLING - poorly compacted, dark grey brown, clayey sand filling 1 SAND - loose, light brown to yellow brown, fine to medium grained sand, moist L 1 1 ſ

1.75 2 2,3,3 S N = 6- 3 3.5 CLAYEY SAND - medium dense, light grey brown, fine to medium grained, clayey sand, moist to wet 6.7.7 4.25 S SAND - medium dense, light grey, N = 14 fine to medium grained sand, moist 4.75 CLAYEY SAND - medium dense, light grey brown, fine to medium 5 grained, clayey sand, moist to wet 11 Y 3,5,8 S N = 136 6.0 SANDY CLAY - very stiff, yellow 1 brown and light grey, sandy clay, 11 wet 2,7,11 N = 18 S 8 8.5 SILTY CLAY - hard, grey brown, 1 silty clay with some ironstone 7.13.18

#### RIG: Scout 2

9.7

9

DRILLER: JS

LOGGED: SI

I

L

11

Note: Unless otherwise

stated, rock is fractured

9.71 & 9.85m; (x3) B0°,

ironstained

along rough planar bedding planes or joints dipping 0°- 10°

CASING: HQ to 9.7m

S

C 100 97 N = 31

PL(A) = 1.7MPa

TYPE OF BORING: Solid flight auger to 7.0m; Rotary to 9.7m; NMLC-Coring to 12.75m WATER OBSERVATIONS: Free groundwater observed at 5.65m whilst augering **REMARKS:** 

bands (possibly extremely low

LAMINITE - description next page

strength laminite)



SURFACE LEVEL: 6.9 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/--

BORE No: 8 PROJECT No: 71682 DATE: 27 - 28/5/2010 SHEET 2 OF 2

| Γ    | Denth | Description                                                                                                                                                                                            | Degree of<br>Weathering |       | Rock<br>Strength | Fracture                 | Discontinuities                                                          | Sa   | ampli          | ng &     | In Situ Testing |
|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|------------------|--------------------------|--------------------------------------------------------------------------|------|----------------|----------|-----------------|
| R    | (m)   | of<br>Strata                                                                                                                                                                                           | Graph                   | T LOG |                  | Spacing<br>(m)<br>େଖନ ଜଣ | B - Bedding J - Joint<br>S - Shear D - Drill Break                       | Type | Core<br>Rec. % | RQD<br>% | Test Results    |
|      | - 11  | LAMINITE - high strength, fresh<br>stained then fresh, slightly<br>fractured and unbroken, light grey<br>to grey, laminite with approximately<br>40% fine grained sandstone<br>laminations (continued) |                         |       |                  |                          |                                                                          | с    | 100            | 97       | PL(A) = 1.8MPa  |
|      |       |                                                                                                                                                                                                        |                         |       |                  |                          | 11.32m: B0°, 5mm<br>Crushed rock fragment<br>11.55m: J35°, rough         |      |                |          | PL(A) = 2,3MPa  |
|      | -12   |                                                                                                                                                                                                        |                         |       |                  |                          | 11.85m: J30°, rough,<br>10mm crushed rock<br>11.89m: B0°, clay<br>veneer | с    | 100            | 97       | PL(A) = 2.6MPa  |
| 9    | -13   | Bore discontinued at 12.75m                                                                                                                                                                            |                         |       |                  |                          |                                                                          |      |                |          |                 |
| 4    | -14   |                                                                                                                                                                                                        |                         |       |                  |                          |                                                                          |      |                |          |                 |
| - 6Ç | - 15  |                                                                                                                                                                                                        |                         |       |                  |                          |                                                                          |      |                |          |                 |
| 6    | -16   |                                                                                                                                                                                                        |                         |       |                  |                          |                                                                          |      |                |          |                 |
| -10  | 17    |                                                                                                                                                                                                        |                         |       |                  |                          |                                                                          |      |                |          |                 |
|      | 18    |                                                                                                                                                                                                        |                         |       |                  |                          |                                                                          |      |                |          |                 |
|      | 19    |                                                                                                                                                                                                        |                         |       |                  |                          |                                                                          |      |                |          |                 |

RIG: Scout 2

CLIENT:

PROJECT:

**News Limited** 

LOCATION: 142-154 Macquarie Street, Parramatta

**Cumberland Newspapers Redevelopment** 

DRILLER: JS

LOGGED: SI

CASING: HQ to 9.7m

TYPE OF BORING: Solid flight auger to 7.0m; Rotary to 9.7m; NMLC-Coring to 12.75m WATER OBSERVATIONS: Free groundwater observed at 5.65m whilst augering REMARKS:



SURFACE LEVEL: 7.1 AHD BORE No: 9 EASTING: NORTHING:

PROJECT No: 71682 DATE: 28/5/2010

| CLIENT:   | News Limited                         |
|-----------|--------------------------------------|
| PROJECT:  | Cumberland Newspapers Redevelopment  |
| LOCATION: | 142-154 Macquarie Street, Parramatta |

DIP/AZIMUTH: 90°/-- SHEET 1 OF 1

|      | Ι.       |             |     | Description                                                                                             | W   | Degree of Weathering |     |          | <u>o</u>     |      | St     | Roe<br>rer    | ck<br>hath |     | 2    | F   | racture | Discon      | tinuities       | Sa   | mpli | ng &    | In Situ Testing |
|------|----------|-------------|-----|---------------------------------------------------------------------------------------------------------|-----|----------------------|-----|----------|--------------|------|--------|---------------|------------|-----|------|-----|---------|-------------|-----------------|------|------|---------|-----------------|
| ā    | 4        | Jept<br>(m) | n   | of                                                                                                      |     |                      |     |          | aph          |      | 8      | I.E           | T          | "I  | /ate | S   | (m)     | B - Bedding | L. Ioint        | ø    | 0%   | 0       | Test Results    |
|      | 1        |             |     | Strata                                                                                                  | 3   | ≥≷                   | N c | ρœ       | ษั           | X LO | (ery L |               | 말망         |     | 5    | 5   | 85 38   | S - Shear   | D - Drill Break | T yp | S C  | RO<br>8 | &<br>Commonte   |
| -    | -        | 0.          | 08  | BITUMINOUS CONCRETE                                                                                     |     | T                    |     | T        | SAL D        | Ŭ,   | 1      | 1             |            | T   |      | Î   |         |             |                 | Δ    | u.   |         | Comments        |
| E    | F        | 0.          | 14  | ROADBASE GRAVEL                                                                                         |     | -                    |     | 1        | $\otimes$    |      | -      | Ţ.            |            |     |      | 1   |         |             |                 |      |      |         | PID-1ppm        |
|      |          | 0.          | 75  | FILLING - dark grey to black, fine<br>to medium grained, sand filling with<br>glass and ceramics, moist |     | i                    |     |          | $\bigotimes$ |      | Ì      |               |            | ļ   |      |     |         |             |                 | А    |      |         | PID=1ppm        |
| ł    | L.       |             |     | SAND - red and yellow brown,                                                                            | ł   |                      |     |          |              |      |        | ł             |            | H   |      |     |         |             |                 |      |      | ·       |                 |
| ľ    | 2        |             |     | medium grained sand, moist                                                                              | 1   | Ì.                   |     | İ        |              | l i  | Ĵ.     | i             | ii         | i   |      | i i | ii ii j |             |                 | A    |      |         | PID=1ppm        |
| Ē.   | ł        | ~           |     |                                                                                                         | 4   |                      |     |          |              | łł   | 1      |               |            | !   |      | !   |         |             |                 |      |      |         |                 |
| Ē    | F        | 1           | .5- | Bore discontinued at 1.5m                                                                               | i   | 1                    | T   | T        |              | H    | Ť      | $\frac{1}{1}$ |            | t   | ł    | 1   |         |             |                 | -    |      |         |                 |
| E    | E        |             |     |                                                                                                         | 1   |                      |     | ļ.       |              |      | 1      | 11            |            | !   |      | I I | U U I   |             |                 |      |      |         |                 |
| E.   | -2       | 8           |     | •                                                                                                       | i   | i                    |     |          |              | H    |        |               |            | 11  |      |     | H H I   |             |                 |      |      |         |                 |
| E    | ł        |             |     |                                                                                                         | 1   | Ì.                   | 1   | İ.       |              | 1    | Ì      | ii            | i          | i   |      | i i | ii ii   |             |                 |      |      |         |                 |
| ŧ.   | È.       |             |     |                                                                                                         | 1   |                      |     |          |              |      |        |               |            | !   |      | 1 1 |         |             |                 |      | 1    |         |                 |
| Ì.   | È.       |             |     |                                                                                                         | i.  | ii                   | i   | i        |              | li   | ÷      | ii            | Ì          | i I |      | 11  | 11 11 1 |             |                 |      |      |         |                 |
| ŧ    | È.       |             |     |                                                                                                         | 1   |                      |     | H        |              | 1    | 1      | 11            | ļ          | !   |      | [ ] | U U     |             |                 |      |      |         |                 |
| F.   | -3       |             |     |                                                                                                         | i.  |                      | 1   | H        |              |      |        |               |            | H   |      | 1   |         |             |                 |      |      |         |                 |
| E    | Ē        |             |     |                                                                                                         | 1   | İ                    | İ   | i        |              | i    | i      | ii            | i          | i   |      | i i | li li   |             |                 |      |      |         |                 |
| E    | E        |             |     |                                                                                                         | ł   |                      |     | !        |              |      |        | ! !           |            | !   |      | 11  | [] []   |             |                 |      |      |         |                 |
| Ł    | t        |             |     |                                                                                                         | ì   | ii                   | i   | i        |              | i    | i.     | i i           | j.         | il  |      | i i | i ii i  |             |                 |      |      |         |                 |
| t    | 4        |             |     |                                                                                                         | 1   |                      | ų.  | !        |              | ļ    | 1      | ļļ            | 1          | !   |      |     | 9 11    |             |                 |      |      |         |                 |
| - 21 | F        |             |     |                                                                                                         | i   | ii                   | ì   | i I      |              | Ì    | ł      |               |            |     |      |     | 444     |             |                 |      |      |         |                 |
| F    | F        |             |     |                                                                                                         | 1   | 11                   | 1   | <u>i</u> |              | ļ    | İ      | ij            | i          | i   |      | i i | i ii    |             |                 |      |      |         |                 |
| F    | F        |             |     |                                                                                                         | ÷   |                      |     | 11       |              | ł    | +      |               |            |     |      |     | 1 11 1  |             |                 |      |      |         |                 |
| E    | E        |             |     |                                                                                                         | Î.  | ii                   | i   | i        |              | i    | i      | ii            | i          | i   | li   | i i | i ii l  |             |                 |      |      |         |                 |
| -0   | -5       |             |     |                                                                                                         | Į.  |                      | 1   | !        |              | ļ    |        |               |            | !   |      |     | 1 11    |             |                 |      |      |         |                 |
|      |          |             |     |                                                                                                         | i   | ii                   | ł   |          |              | H    | ì      |               | ł          |     | l    |     | 141     |             |                 |      |      |         |                 |
|      |          |             |     |                                                                                                         | Į.  | ļ ļ                  | 1   | !        |              | ļ    | Į.     | I I           | 1          |     | li   | 1   | 111     |             |                 |      |      |         |                 |
|      | -        |             |     |                                                                                                         | ł   |                      | ÷   |          |              | -    |        |               |            |     |      |     |         |             |                 |      |      |         |                 |
|      | <u>.</u> |             |     |                                                                                                         | Î.  | i i                  | i   | i        |              | i    | i      | ii            | i          |     | li   | ì   | i ii l  |             |                 |      |      |         |                 |
|      | -6       |             |     |                                                                                                         | Į.  |                      |     |          |              | 1    |        |               |            |     | 1    | 1   | 1 11    |             |                 |      |      |         |                 |
|      |          |             | 1   |                                                                                                         | i.  |                      | i.  |          |              | ł    | ii     |               | ii         |     | li   | 1   | 1 11    |             |                 |      |      |         |                 |
|      |          |             |     |                                                                                                         | 1   |                      |     |          |              | Ţ.   | 11     |               | 11         |     | 1    | 1   | 111     |             |                 |      |      |         |                 |
|      |          |             |     |                                                                                                         | ł   |                      |     |          |              | ł    |        | ł             |            |     |      | 1   | 1 11 1  |             |                 |      |      |         |                 |
|      | -7       |             |     |                                                                                                         | I.  | İİ                   | ii  |          |              | i    | ii     | i             | ii         |     | i    | i   | i ii    |             |                 |      |      |         |                 |
| 0    |          |             |     |                                                                                                         | 1   | 1 F<br>1 T           |     |          |              | ÷.   |        | -             |            |     |      |     | 1 11    |             |                 |      |      |         |                 |
|      |          |             |     |                                                                                                         | i   | ii                   | ii  |          |              | î.   | 11     | i             |            |     | li   | - i | 111     |             |                 |      |      | - 1     |                 |
|      |          |             | 1   |                                                                                                         | Į.  |                      |     |          |              | !    | [ ]    | 1             | []         |     | 1    | Ì   | 111     |             |                 |      |      |         |                 |
|      |          |             | 1   |                                                                                                         | 1   |                      |     |          |              | Ł    |        |               | 11         |     | H    |     |         |             |                 |      |      |         | 1               |
| _    | -8       |             |     |                                                                                                         | İ i | ii                   | ii  |          |              | i.   | ii     | i             | ii         |     | i    | - i | i ii l  |             |                 |      |      |         |                 |
| 1    |          |             |     |                                                                                                         |     |                      | H   |          |              | 1    | !!     | 1             | 11         |     | 1    | 1   | [ [] ]  |             |                 |      |      |         |                 |
|      |          |             |     |                                                                                                         | i i |                      | ii  |          |              | ł.   |        | ł             |            |     | ł    |     |         |             |                 |      |      |         |                 |
|      |          |             |     |                                                                                                         | ļ   | ļ                    | ļį  |          |              | i    | 11     | i             | ii         |     | i    | i   | i ii    |             |                 |      |      |         |                 |
| ļ    |          |             |     |                                                                                                         |     |                      |     |          |              | 1    |        | -             |            |     | 1    | 1   |         |             |                 |      |      |         |                 |
| ~    | -9       |             |     |                                                                                                         | i i | i                    | ii  |          |              | i    |        | 1             |            |     | li   |     |         |             |                 |      |      |         |                 |
| 1    |          |             |     |                                                                                                         |     | 1                    |     |          |              | !    |        | 1             |            |     | !    | 1   |         |             |                 |      |      |         |                 |
| F    |          |             |     |                                                                                                         | 11  |                      |     |          |              | 1    |        | 1             |            |     | ł    |     |         |             |                 |      |      |         |                 |
| E    |          |             |     |                                                                                                         | ļļ  | ļ                    | I I |          |              | 1    |        | i             | i i        |     | Í.   | i)  | i ii    |             |                 |      |      |         |                 |
| F    | _        | _           |     |                                                                                                         |     | H                    |     |          |              |      |        | T.            |            |     |      |     |         |             |                 |      |      |         |                 |
|      |          |             |     |                                                                                                         |     |                      |     | -        |              | -    | _      | -             | -          | -   | -    | _   |         |             |                 | _    | -    |         |                 |

RIG: Scout 2

DRILLER: JS TYPE OF BORING: Solid flight auger to 1.5m

LOGGED: PMO

CASING: Uncased

WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:** 

| SAMPLING & I                                                                                           | N SITU TESTING LEGEND                                                                                                                                                                 | CHECKED       | -                       |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------|
| D Disturbed sample<br>B Bulk sample<br>U, Tube sample (x mm dia.)<br>W Water sample<br>C Core drilling | PL Decket perieduniter (kra)<br>PID Photo ionisation detector<br>S Standard penetration test<br>PL Point load strength Is(50) MPa<br>V Shear Vane (kPa)<br>D Water seen # Water level | Initials: PUD | <b>Douglas Partners</b> |

SURFACE LEVEL: 6.8 AHD EASTING: NORTHING: DIP/AZIMUTH: 90°/--

**BORE No:** 10 PROJECT No: 71682 DATE: 2/6/2010 SHEET 1 OF 1

|     |        |                                                                                        |     |      |        |              |       | De               | ali  |                    |      |         |                        |    |                          |                              | -    |                |          |                 |
|-----|--------|----------------------------------------------------------------------------------------|-----|------|--------|--------------|-------|------------------|------|--------------------|------|---------|------------------------|----|--------------------------|------------------------------|------|----------------|----------|-----------------|
|     | Depth  | Description                                                                            | We  | egre | ering  | 일 문 _        | s     | Stre             | ngtl | n                  | 5    | Fra     | cture                  |    | Discon                   | tinuities                    | Sa   | ampli          | ng &     | In Situ Testing |
| R   | (m)    | of<br>Strata                                                                           | M   | MW   | N or o | Grap         | K Low | Woline<br>Marine | l l  | ery High<br>X High | Wate | 89<br>( | n)<br>៣)<br>ខ្លួនខ្លួន | 8  | B - Bedding<br>S - Shear | J - Joint<br>D - Drill Break | Type | Core<br>Rec. % | RQD<br>% | Test Results    |
| E   | 0.05   | BITUMINOUS CONCRETE                                                                    | T   | TT   | TT     | 0.0          | Ĩ     | Ē                | ŢŢ   | T                  |      |         |                        | Ī  |                          |                              | A    | -              | -        | PID=100m        |
| ŧ   |        | ROADBASE GRAVEL                                                                        |     |      |        | $\boxtimes$  |       |                  | h    | 1                  |      | - i     | 1                      | 11 |                          |                              |      |                |          |                 |
| Ē   | 0.6    | FILLING - dark brown, sand filling<br>with brick and some clay, moist                  | ł   |      |        | $\bigotimes$ |       |                  | ii   | i                  | i    | i       |                        |    |                          |                              | A    |                |          | PID=1ppm        |
| 9   | -1     | FILLING - dark brown to black,<br>sand filling with some ash, brick<br>and clay, moist |     |      |        | $\bigotimes$ |       |                  |      | I<br>I<br>I        |      |         |                        |    |                          |                              | A    |                |          | PID=1ppm        |
|     | 1.75   | SAND - light to dark grey, medium<br>grained sand with some silt, moist                |     |      |        |              |       |                  |      | I                  |      |         |                        |    |                          |                              | A    |                |          | PID=1ppm        |
| - 9 | -2 2.0 | SAND - light brown and red brown,<br>medium grained sand with clay,                    |     |      |        |              |       |                  |      | 1                  |      |         |                        |    |                          |                              |      |                |          |                 |
|     |        | Bore discontinued at 2.0m                                                              | 1   |      |        |              |       | Ť                |      | Î                  | l    | ii      |                        |    |                          |                              |      |                |          |                 |
|     |        |                                                                                        | Ì   |      |        |              |       |                  |      | 1                  |      |         |                        |    |                          |                              |      |                |          |                 |
|     | -3     |                                                                                        |     |      |        |              |       | 1                |      | 1<br>1             |      |         |                        |    |                          |                              |      |                |          |                 |
|     |        |                                                                                        |     |      |        |              |       | 1                |      |                    |      |         |                        |    |                          |                              |      |                |          |                 |
|     |        |                                                                                        |     |      |        |              |       |                  |      |                    | 1    |         |                        |    |                          |                              |      |                |          |                 |
| -07 | 4      |                                                                                        |     |      |        |              |       | ļ                |      |                    | 1    |         |                        |    |                          |                              |      |                |          |                 |
|     |        |                                                                                        |     |      |        |              |       | 1                |      |                    |      | 11      | 11                     |    |                          |                              |      |                |          |                 |
|     |        |                                                                                        |     |      |        |              | ļ     | ļ                |      | ļ                  |      |         |                        |    |                          |                              |      |                |          |                 |
| -14 |        |                                                                                        |     |      |        |              |       | I                |      |                    |      |         | H                      |    |                          |                              |      |                |          |                 |
|     | -5     |                                                                                        |     |      |        |              |       |                  |      | 1                  |      | Н       |                        |    |                          |                              |      |                |          |                 |
|     |        |                                                                                        |     |      |        |              |       |                  |      |                    | 1    |         |                        |    |                          |                              |      |                |          |                 |
| _   |        |                                                                                        |     | 1    |        |              |       | 1                |      |                    |      |         |                        |    |                          |                              |      |                |          |                 |
| -   | 6      |                                                                                        |     | ļ    |        |              |       |                  |      | 1                  |      |         |                        |    |                          |                              |      |                |          |                 |
| ŧ   |        |                                                                                        |     |      |        |              |       |                  |      |                    |      |         |                        |    |                          |                              |      |                |          |                 |
| -   |        |                                                                                        |     |      |        |              |       |                  |      |                    |      |         | 11                     |    |                          |                              |      |                |          |                 |
| -   | 7      |                                                                                        |     |      |        |              |       |                  |      |                    | 1    |         |                        |    |                          |                              |      |                |          |                 |
| Ę   |        |                                                                                        |     |      |        |              |       |                  |      |                    | 1    |         |                        |    |                          |                              |      |                |          |                 |
| ļ   |        |                                                                                        |     |      |        |              |       |                  |      |                    |      | Ц       |                        |    |                          |                              |      |                |          |                 |
| 7[  | 9      |                                                                                        |     |      |        |              |       |                  |      |                    | l    |         | H                      |    |                          |                              |      |                |          |                 |
| -   | 0      |                                                                                        |     |      |        |              |       |                  | Ì    |                    | li   |         | li                     |    |                          |                              |      |                |          |                 |
|     |        |                                                                                        |     |      |        |              |       |                  |      |                    | i    |         |                        |    |                          |                              |      |                |          |                 |
| 7   |        |                                                                                        |     |      |        |              |       |                  |      |                    | i    |         |                        |    |                          |                              |      |                |          |                 |
| -   | 9      |                                                                                        |     |      |        |              |       |                  |      |                    | 1    |         |                        |    |                          |                              |      |                |          |                 |
| -   |        |                                                                                        |     |      |        |              |       |                  |      |                    | i    |         |                        |    |                          |                              |      |                |          |                 |
| 2   |        |                                                                                        |     |      | il     |              |       |                  |      |                    | Ì    | H.      |                        |    |                          |                              |      |                |          |                 |
| ŀ   |        |                                                                                        | i i | i i  | I.     |              | Ы     | i i              | ii   |                    | ľ    | 11      | 1i                     |    |                          |                              |      |                |          |                 |

RIG: Scout 2

CLIENT:

PROJECT:

**News Limited** 

LOCATION: 142-154 Macquarie Street, Parramatta

Cumberland Newspapers Redevelopment

DRILLER: JS TYPE OF BORING: Solid flight auger to 2.0m

LOGGED: PMO

**CASING:** Uncased

WATER OBSERVATIONS: No free groundwater observed whilst augering **REMARKS:** 

 

 SAMPLING & IN SITU TESTING LEGEND

 pp
 Pocket penetrometer (kPa)

 le
 PID
 Photo ionisation detector

 s
 Standard penetration test

 mm dia.)
 PL
 Point load strength Is(50) MPa

 V
 Shear Vane (kPa)

 D
 Water seep
 ¥

 CHECKED Auger sample Disturbed sample Bulk sample Tube sample (x mm dia.) Water sample Core dnilling ADBU.VC Initials RUD **Douglas Partners** Geotechnics · Environment · Groundwater Date: 22 . 7.10

# **APPENDIX D** Summary of Analytical Results

|               |                                  |              |              |              |                  |                                |                                  |                                  |                                  | TAE       | BLE D1 - S | SOIL SAMP   | LES         |             |             |          |              |             |       |          |           |              |         |       |
|---------------|----------------------------------|--------------|--------------|--------------|------------------|--------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------|------------|-------------|-------------|-------------|-------------|----------|--------------|-------------|-------|----------|-----------|--------------|---------|-------|
|               |                                  |              |              |              |                  |                                |                                  |                                  |                                  |           |            |             |             |             |             |          |              |             |       |          |           |              |         |       |
|               |                                  |              | _            |              |                  |                                |                                  |                                  |                                  | <u> </u>  |            | Total       | Concentra   | tions       |             |          |              |             | -     | -        |           |              |         | _     |
| Sample        | Depth (m)                        | В            | T            | E            | X                | C <sub>6</sub> -C <sub>9</sub> | C <sub>10</sub> -C <sub>14</sub> | C <sub>15</sub> -C <sub>28</sub> | C <sub>29</sub> -C <sub>36</sub> | Total PAH | B(a)P      | OCP         | OPP<br>"    | PCB         | Phenol      | Asbestos | As           | Cd          | Cr    | Cu       | Pb        | Hg           | Ni      | Zn    |
|               |                                  | mg/kg        | mg/kg        | mg/kg        | mg/kg            | mg/kg                          | mg/kg                            | mg/kg                            | mg/kg                            | mg/kg     | mg/kg      | mg/kg       | mg/kg       | mg/kg       | mg/kg       | (Y/N)    | mg/kg        | mg/kg       | mg/kg | mg/kg    | mg/kg     | mg/kg        | mg/kg   | mg/kg |
|               | 0.5                              | -0 F         | -0.5         | -1.0         | -20              | -25                            | -50                              | -100                             | -100                             |           | 0.2        | -0.1        | -0.1        | -0.1        | -5.0        |          | 4            | -0 F        | 10    | 140      | 280       | 0.2          | 27      | 1700  |
|               | 0.5                              | <0.5         | <0.5         | <1.0         | <2.0             | <23                            | <50                              | <100                             | <100                             | 1.7       | 0.2        | <0.1        | <0.1        | <0.1        | <5.0        | IN<br>NI | 4            | <0.5        | 10    | 140      | 520       | 0.2          | 12      | 110   |
| BH3           | 0.5                              | <0.5         | <0.5         | <1.0         | <2.0             | <25                            | <50                              | 110                              | <100                             | 40.6      | 4.3        | <0.1        | <0.1        | <0.1        | <5.0        | N        | -4 0         | <0.5        | 7     | 23       | 140       | 0.5          | 14      | 79    |
| BH3           | 1.0                              | <0.5         | <0.5         | <1.0         | <2.0             | <25                            | <50                              | <100                             | <100                             | <0.2      | <0.05      | <0.1        | <0.1        | <0.1        | <5.0        | N        | 4            | <0.5        | 18    | 20       | 210       | 0.1          | 4       | 15    |
| BH5           | 0.5                              | <0.5         | <0.5         | <1.0         | <2.0             | <25                            | <50                              | <100                             | <100                             | 32.9      | 2.7        | <0.1        | <0.1        | <0.1        | <5.0        | N        | <4.0         | <0.5        | 10    | 28       | 320       | 0.2          | 13      | 150   |
| BH5           | 1.0                              | < 0.5        | <0.5         | <1.0         | <2.0             | <25                            | <50                              | <100                             | <100                             | 4.3       | 0.4        | <0.1        | <0.1        | <0.1        | <5.0        | N        | 36           | 1.4         | 40    | 270      | 1500      | 14           | 32      | 1800  |
| BH6           | 0.1                              | <0.5         | <0.5         | <1.0         | <2.0             | <25                            | <50                              | <100                             | <100                             | 0.9       | 0.1        | <0.1        | <0.1        | <0.1        | <5.0        | N        | 9            | <0.5        | 10    | 47       | 570       | 0.6          | 32      | 63    |
| BH7           | 0.1                              | <0.5         | <0.5         | <1.0         | <2.0             | <25                            | <50                              | <100                             | <100                             | 1.9       | 0.1        | <0.1        | <0.1        | <0.1        | <5.0        | N        | <4.0         | <0.5        | 10    | 49       | 100       | <0.10        | 52      | 73    |
| BH8           | 0.5                              | <0.5         | <0.5         | <1.0         | <2.0             | <25                            | <50                              | <100                             | <100                             | <0.2      | <0.05      | <0.1        | <0.1        | <0.1        | <5.0        | N        | <4.0         | <0.5        | 11    | 68       | 5         | <0.10        | 82      | 41    |
| BH8           | 1.0                              | <0.5         | <0.5         | <1.0         | <2.0             | <25                            | <50                              | <100                             | <100                             | 1.4       | 0.1        | <0.1        | <0.1        | <0.1        | <5.0        | N        | 28           | <0.5        | 5     | 12       | 170       | 0.1          | 3       | 87    |
| BH9           | 0.5                              | <0.5         | <0.5         | <1.0         | <2.0             | <25                            | <50                              | <100                             | <100                             | <0.2      | <0.05      | <0.1        | <0.1        | <0.1        | <5.0        | N        | <4.0         | <0.5        | 3     | 4        | 61        | <0.10        | 2       | 14    |
| BH10          | 0.5                              | <0.5         | <0.5         | <1.0         | <2.0             | <25                            | <50                              | <100                             | <100                             | <0.2      | <0.05      | <0.1        | <0.1        | <0.1        | <5.0        | N        | <4.0         | <0.5        | 8     | 9        | 240       | 0.1          | 4       | 38    |
| BH10          | 1.0                              | <0.5         | <0.5         | <1.0         | <2.0             | <25                            | <50                              | <100                             | <100                             | 2.2       | 0.2        | <0.1        | <0.1        | <0.1        | <5.0        | N        | 4            | <0.5        | 12    | 31       | 260       | 0.1          | 5       | 220   |
| Natural Soil  |                                  |              |              |              |                  |                                |                                  |                                  | (                                |           |            |             |             |             |             |          |              |             | -     |          | -         |              | -       | _     |
| BH1           | 1.0                              | < 0.5        | <0.5         | <1.0         | <2.0             | <25                            | <50                              | <100                             | <100                             | <0.2      | < 0.05     | <0.1        | <0.1        | <0.1        | <5.0        | N        | <4.0         | < 0.5       | 3     | 4        | 9         | <0.10        | 3       | 7     |
| BH4           | 0.5                              | <0.5         | <0.5         | <1.0         | <2.0             | <25                            | <50                              | <100                             | <100                             | 0.7       | 0.09       | <0.1        | <0.1        | <0.1        | <5.0        | N        | <4.0         | <0.5        | 5     | 10       | 37        | 0.2          | 5       | 34    |
| BH4           | 1.0                              | <0.5         | <0.5         | <1.0         | <2.0             | <25                            | <50                              | <100                             | <100                             | <0.2      | <0.05      | <0.1        | <0.1        | <0.1        | <5.0        | N        | <4.0         | <0.5        | 6     | 5        | 10        | <0.10        | 3       | 11    |
|               | 0.5                              | <0.5         | <0.5         | <1.0         | <2.0             | <25                            | <50                              | <100                             | <100                             | <0.2      | <0.05      | <0.1        | <0.1        | <0.1        | <5.0        | IN NI    | <4.0         | <0.5        |       | 3        | 6         | 0.1          | 2       | 150   |
|               | 0.5                              | <0.5         | <0.5         | <1.0         | <2.0             | <20                            | <50                              | <100                             | <100                             | 0.5       | 0.00       | <0.1        | <0.1        | <0.1        | <5.0        | IN<br>NI | -10          | <0.5        | 4     | 0<br>170 | 90<br>170 | 0.1          | 4<br>24 | 110   |
| BH0           | 0.5                              | <0.5         | <0.5         | <1.0         | <2.0             | <20                            | <50                              | <100                             | <100                             | 4.5       | <0.40      | <0.1        | <0.1        | <0.1        | <5.0        | N        | <4.0         | <0.5        | 7     | 3        | 170       | 0.1<br><0.10 | 24      | 7     |
| QA/QC Sam     | nles                             | <0.0         | <0.5         | <1.0         | ~2.0             | ~2.5                           | ~30                              | <100                             | <100                             | <0.2      | <0.00      | <b>NO.1</b> | <b>NO.1</b> | <b>NO.1</b> | <b>~0.0</b> |          | <b>\</b> +.0 | <b>~0.0</b> | 5     | J        | 10        | <0.10        |         | '     |
| Dup2          | BH6/1.0 m                        | <0.5         | <0.5         | <1.0         | <2.0             | <25                            | <50                              | <100                             | <100                             | 0.7       | 0.06       | <0.1        | <0.1        | <0.1        | <5.0        | N        | 6            | <0.5        | 4     | 10       | 67        | 1            | 4       | 150   |
| Dup4          | BH1/1.0 m                        | < 0.5        | <0.5         | <1.0         | <2.0             | <25                            | <50                              | <100                             | <100                             | <0.2      | <0.05      | <0.1        | <0.1        | <0.1        | <5.0        | N        | <4.0         | <0.5        | 3     | 3        | 7         | <0.10        | 2       | 6     |
| SPIKE         | 28/05/2010                       | 91%          | 93%          | 91%          | 92%/91%          | N/A                            | N/A                              | N/A                              | N/A                              | N/A       | N/A        | N/A         | N/A         | N/A         | N/A         | N/A      | N/A          | N/A         | N/A   | N/A      | N/A       | N/A          | N/A     | N/A   |
| BLANK         | 28/05/2010                       | <0.5         | <0.5         | <1.0         | <2.0             | <25                            | <50                              | <100                             | <100                             | <0.2      | <0.05      | N/A         | N/A         | N/A         | N/A         | N/A      | N/A          | N/A         | N/A   | N/A      | N/A       | N/A          | N/A     | N/A   |
| Guideline     |                                  |              |              |              |                  |                                |                                  |                                  |                                  |           |            |             |             |             |             |          |              |             |       |          |           |              |         |       |
| HIL Commer    | cial/Industrial <sup>1</sup>     | -            | -            | -            | -                | -                              |                                  | -                                |                                  | 100       | 5          | -           | -           | 50          | 42500       | -        | 500          | 100         | 500   | 5000     | 1500      | 75           | 3000    | 35000 |
| Sensitive Lar | nd Use <sup>2</sup>              | 1            | 1.4          | 3.1          | 14               | 65                             |                                  | 1000                             |                                  | -         | -          | -           | -           | -           | -           | -        | -            | -           | -     | -        | -         | -            |         | -     |
|               |                                  |              |              |              |                  |                                |                                  |                                  |                                  |           |            |             |             |             |             |          |              |             |       |          |           |              |         |       |
| Notes:        | <sup>1</sup> Contaminated Sites: | Guidelines f | or the NSW S | Site Auditor | Scheme (2nd      | Edition, 200                   | )6)                              |                                  |                                  |           |            |             |             |             |             |          |              |             |       |          |           |              |         |       |
|               | <sup>2</sup> Contaminated Sites: | Guidelines f | or Assessing | Service Sta  | ation Sites (199 | 94)                            |                                  |                                  |                                  |           |            |             |             |             |             |          |              |             |       |          |           |              |         |       |

B = Benzene; T = Toluene; E = Ethylbenzene; X = Xylene; PAH = Polycyclic Aromatic Hydrocarbons; B(a)P = Benzo(a)pyrene; OCP = Organochlorine pesticides; OPP = Organophosphorus Pesticides; PCB = Polychlorinated biphenyls; As = Arsenic; Cd = Cadmium; Cr = Chromium; Cu = Copper; Pb = Lead; Hg = Mercury; Ni = Nickel; Zn = Zinc; N/A = Not analysed

#### TABLE D2 - SOIL SAMPLES

|                                             |           |           |        |      | Le   | achable Co | oncentratio | ons  |       |      |      |  |  |  |
|---------------------------------------------|-----------|-----------|--------|------|------|------------|-------------|------|-------|------|------|--|--|--|
| Sample                                      | Depth (m) | Total PAH | B(a)P  | As   | Cd   | Cr         | Cu          | Pb   | Hg    | Ni   | Zn   |  |  |  |
|                                             |           | mg/L      | mg/L   | mg/L | mg/L | mg/L       | mg/L        | mg/L | mg/L  | mg/L | mg/L |  |  |  |
| Foxicity Characteristics Leaching Procedure |           |           |        |      |      |            |             |      |       |      |      |  |  |  |
| BH1                                         | 0.5       | -         | -      | -    | -    | -          | -           | 0.10 | -     | -    | -    |  |  |  |
| BH2                                         | 0.5       | <0.002    | <0.001 | -    | -    | -          | -           | 0.07 | -     | -    | -    |  |  |  |
| BH3                                         | 0.5       | < 0.002   | <0.001 | -    | -    | -          | -           | -    | -     | -    | -    |  |  |  |
| BH5                                         | 0.5       | <0.002    | <0.001 | -    | -    | -          | -           | 0.07 | -     | -    | -    |  |  |  |
| BH5                                         | 1.0       | -         | -      | -    | -    | -          | -           | 0.90 | 0.001 | -    | -    |  |  |  |
| BH6                                         | 0.1       | -         | -      | -    | -    | -          | -           | 0.03 | -     | -    | -    |  |  |  |
| BH7                                         | 0.1       | -         | -      | -    | -    | -          | -           | -    | 0.060 | -    | -    |  |  |  |
| BH8                                         | 0.5       | -         | -      | -    | -    | -          | -           | -    | 0.100 | -    | -    |  |  |  |

| Notes: | PAH = Polycyclic Aromatic Hydrocarbons; B(a)P = Benzo(a)pyrene; As = Arsenic; Cd = Cadmium; Cr = Chromium; |
|--------|------------------------------------------------------------------------------------------------------------|
|        | Cu = Copper; Pb = Lead; Hg = Mercury; Ni = Nickel; Zn = Zinc; N/A = Not analysed                           |

|             |                                 |                |                |               |                |                                |                                  |                                  |                                  | IA               | BLE D3 - (   | SKOUNDW       | AIER SAW    | PLES       |                |                |             |               |               |            |                |             |            |             |          |
|-------------|---------------------------------|----------------|----------------|---------------|----------------|--------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------|--------------|---------------|-------------|------------|----------------|----------------|-------------|---------------|---------------|------------|----------------|-------------|------------|-------------|----------|
|             |                                 |                |                |               |                |                                |                                  |                                  |                                  |                  |              |               | Total Con   | centration | S              |                |             |               |               |            |                |             |            |             |          |
| Sample      | Date                            | В              | Т              | Е             | Х              | C <sub>6</sub> -C <sub>9</sub> | C <sub>10</sub> -C <sub>14</sub> | C <sub>15</sub> -C <sub>28</sub> | C <sub>29</sub> -C <sub>36</sub> | <b>Total PAH</b> | B(a)P        | OCP           | OPP         | PCB        | Phenol         | Total VOC      | As          | Cd            | Cr            | Cu         | Pb             | Hg          | Ni         | Zn          | Hardness |
|             |                                 | μg/L           | μg/L           | μg/L          | μg/L           | µg/L                           | μg/L                             | μg/L                             | μg/L                             | μg/L             | μg/L         | μg/L          | µg/L        | µg/L       | μg/L           | μg/L           | μg/L        | μg/L          | μg/L          | μg/L       | µg/L           | μg/L        | µg/L       | μg/L        | mg/L     |
| Groundwate  | ər                              |                |                |               |                |                                |                                  |                                  |                                  |                  |              |               |             |            |                |                |             |               |               |            |                |             |            |             |          |
| GW4         | 2/07/2010                       | <10            | <10            | <10           | <20            | <100                           | -                                | -                                | -                                | -                | -            | -             | -           | -          | -              | <100           | -           | -             | -             | -          | -              | -           | -          | -           | -        |
| GW4         | 15/07/2010                      | -              | -              | -             | -              | -                              | -                                | -                                | -                                | -                | -            | -             | -           | -          | -              | -              | <1          | 0.1           | <1            | 2          | <1             | <0.5        | 4          | 27          | 370      |
| GW5         | 2/07/2010                       | <10            | <10            | <10           | <20            | <100                           | <50                              | <100                             | <100                             | <2               | <1           | <0.2          | <0.2        | <2         | <50            | <100           | <1          | 0.2           | 1             | 8          | 6              | <0.5        | 3          | 12          | 139      |
| QA/QC Sam   | ples                            | •              |                |               |                |                                | •                                |                                  |                                  |                  |              | •             |             |            |                | •              |             |               |               |            | •              |             |            |             |          |
| Rins2       | 2/06/2010                       | <1             | <1             | <1            | <2             | <10                            | <50                              | <100                             | <100                             | <2               | <1           | -             | -           | -          | -              | -              | -           | -             | -             | -          | -              | -           | -          | -           | -        |
| Rins4       | 2/07/2010                       | <1             | <1             | <1            | <2             | <10                            | <50                              | <100                             | <100                             | <2               | <1           | -             | -           | -          | -              | <100           | <1          | <0.1          | <1            | <1         | <1             | <0.5        | <1         | <1          | -        |
| Guideline   |                                 | •              |                |               |                |                                | •                                |                                  |                                  |                  |              | •             |             |            |                | •              |             |               |               |            | •              |             |            |             |          |
| 95% Protect | ion Freshwater <sup>1</sup>     | 950            | -              | -             | 550            | -                              |                                  | -                                |                                  | -                | -            | 0.7           | 0.8         | -          | 320            | 7000           | 24          | 0.2           | 1             | 1.4        | 3.4            | 0.6         | 11         | 8           | -        |
| Fresh ecosy | stems <sup>2</sup>              | 300            | 300            | 140           | 380            | -                              |                                  | -                                |                                  | 3                | -            | -             | -           | -          | 50             | -              | -           | -             | -             | -          | 1 to 5         | -           | -          | -           | -        |
| HMTV for Ha | ard Water <sup>1</sup>          | -              | -              | -             | -              | -                              |                                  | -                                |                                  | -                | -            | -             | -           | -          | -              | -              | -           | 0.8           | 3.5           | 5.2        | 23.8           | -           | 40.5       | 29.5        | -        |
| HMTV for Ex | t. Hard Water <sup>1</sup>      | -              | -              | -             | -              | -                              |                                  | -                                |                                  | -                | -            | -             | -           | -          | -              | -              | -           | 1.9           | 7.8           | 11.8       | 82.6           | -           | 93.1       | 67.7        | -        |
| 95% Protect | ion Marine <sup>1</sup>         | 700            | -              | -             | -              | -                              |                                  | -                                |                                  | -                | -            | -             | -           | -          | 400            | 2000           | -           | 5.5           | 4.4           | 1.3        | 4.4            | 0.4         | 70         | 15          | -        |
| Marine ecos | ystems <sup>2</sup>             | 300            | -              | -             | 380            | -                              |                                  | -                                |                                  | 3                | -            | -             | -           | -          | 50             | -              | -           | -             | -             | -          | 5              | -           | -          | -           | -        |
|             |                                 |                |                |               |                |                                |                                  |                                  |                                  |                  |              |               |             |            |                |                |             |               |               |            |                |             |            |             |          |
| Notes:      | <sup>1</sup> Australian and New | / Zealand Gu   | idelines for F | resh and Ma   | rine Water C   | uality (ANZE                   | ECC, 2000)                       |                                  |                                  |                  |              |               |             |            |                |                |             |               |               |            |                |             |            |             |          |
|             | <sup>2</sup> Contaminated Sites | s: Guidelines  | for Assessin   | a Service Sta | ation Sites (1 | 994)                           |                                  |                                  |                                  |                  |              |               |             |            |                |                |             |               |               |            |                |             |            |             |          |
|             | B = Benzene: T = To             | oluene: E = Et | thvlbenzene:   | X = Xvlene:   | PAH = Polyc    | vclic Aroma                    | tic Hvdrocarb                    | ons: B(a)P =                     | Benzo(a)pv                       | rene: OCP = C    | Drganochlori | ne pesticides | : OPP = Ord | anophospho | orus Pesticide | es: PCB = Polv | chlorinated | piphenvls: VC | DC = Volatile | Organochlo | rines: As = Aı | senic: Cd = | Cadmium: C | r = Chromiu | im:      |

| Notes: | 'Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC, 2000)                                                                                                                                                        |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | <sup>2</sup> Contaminated Sites: Guidelines for Assessing Service Station Sites (1994)                                                                                                                                                          |
|        | B = Benzene; T = Toluene; E = Ethylbenzene; X = Xylene; PAH = Polycyclic Aromatic Hydrocarbons; B(a)P = Benzo(a)pyrene; OCP = Organochlorine pesticides; OPP = Organophosphorus Pesticides; PCB = Polychlorinated biphenyls; VOC = Volatile Out |
|        | Cu = Copper; Pb = Lead; Hg = Mercury; Ni = Nickel; Zn = Zinc; Hardness = mgCaCO3/L; N/A = Not analysed; HMTV = hardness modified trigger value for metals; All metals outlined above are DISSOLVED concentrations                               |

## APPENDIX E Detailed Analytical Results



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

### CERTIFICATE OF ANALYSIS 41928

<u>Client:</u> Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Peter Oitmaa

#### Sample log in details:

Your Reference: No. of samples: Date samples received: Date completed instructions received:

#### 71682, Parramatta

24 Soils, 1 Water 07/06/10 07/06/10

#### Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.* 

#### **Report Details:**

 Date results requested by:
 15/06/10

 Date of Preliminary Report:
 Not Issued

 Issue Date:
 15/06/10

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 This document is issued in accordance with NATA's accreditation requirements.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with \*.

#### **Results Approved By:**

Kluign Morgen

Rhian Morgan Metals Supervisor

Jacinta Hurst Laboratory Manager

Envirolab Reference: 41 Revision No: R

41928 R 00

M. Mauffield

Matt Mansfield Approved Signatory



Page 1 of 42

| vTPH & BTEX in Soil            |       |            |            |           |           |           |
|--------------------------------|-------|------------|------------|-----------|-----------|-----------|
| Our Reference:                 | UNITS | 41928-1    | 41928-2    | 41928-3   | 41928-4   | 41928-5   |
| Your Reference                 |       | BH1/0.5    | BH1/1.0    | BH2/0.5   | BH3/0.5   | BH3/1.0   |
| Date Sampled                   |       | 28/05/2010 | 28/05/2010 | 1/06/2010 | 2/06/2010 | 2/06/2010 |
| Type of sample                 |       | Soil       | Soil       | Soil      | Soil      | Soil      |
| Date extracted                 | -     | 8/6/2010   | 8/6/2010   | 8/6/2010  | 8/6/2010  | 8/6/2010  |
| Date analysed                  | -     | 8/6/2010   | 8/6/2010   | 8/6/2010  | 8/6/2010  | 8/6/2010  |
| vTPH C6 - C9                   | mg/kg | <25        | <25        | <25       | <25       | <25       |
| Benzene                        | mg/kg | <0.5       | <0.5       | <0.5      | <0.5      | <0.5      |
| Toluene                        | mg/kg | <0.5       | <0.5       | <0.5      | <0.5      | <0.5      |
| Ethylbenzene                   | mg/kg | <1.0       | <1.0       | <1.0      | <1.0      | <1.0      |
| m+p-xylene                     | mg/kg | <2.0       | <2.0       | <2.0      | <2.0      | <2.0      |
| o-Xylene                       | mg/kg | <1.0       | <1.0       | <1.0      | <1.0      | <1.0      |
| Surrogate aaa-Trifluorotoluene | %     | 73         | 121        | 120       | 81        | 127       |

| vTPH & BTEX in Soil            |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | 41928-6    | 41928-7    | 41928-8    | 41928-9    | 41928-10   |
| Your Reference                 |       | BH4/0.5    | BH4/1.0    | BH5/0.5    | BH5/1.0    | BH6/0.1    |
| Date Sampled                   |       | 31/05/2010 | 31/05/2010 | 31/05/2010 | 31/05/2010 | 25/05/2010 |
| Type of sample                 |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                 | -     | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010   |
| Date analysed                  | -     | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010   |
| vTPH C6 - C9                   | mg/kg | <25        | <25        | <25        | <25        | <25        |
| Benzene                        | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Toluene                        | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Ethylbenzene                   | mg/kg | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |
| m+p-xylene                     | mg/kg | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       |
| o-Xylene                       | mg/kg | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |
| Surrogate aaa-Trifluorotoluene | %     | 72         | 84         | 87         | 122        | 116        |

| vTPH & BTEX in Soil            |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | 41928-11   | 41928-12   | 41928-13   | 41928-14   | 41928-15   |
| Your Reference                 |       | BH6/0.5    | BH6/1.0    | BH7/0.1    | BH7/0.5    | BH8/0.5    |
| Date Sampled                   |       | 25/05/2010 | 25/05/2010 | 25/05/2010 | 25/05/2010 | 27/05/2010 |
| Type of sample                 |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                 | -     | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010   |
| Date analysed                  | -     | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010   |
| vTPH C6 - C9                   | mg/kg | <25        | <25        | <25        | <25        | <25        |
| Benzene                        | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Toluene                        | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Ethylbenzene                   | mg/kg | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |
| m+p-xylene                     | mg/kg | <2.0       | <2.0       | <2.0       | <2.0       | <2.0       |
| o-Xylene                       | mg/kg | <1.0       | <1.0       | <1.0       | <1.0       | <1.0       |
| Surrogate aaa-Trifluorotoluene | %     | 120        | 125        | 134        | 124        | 126        |

ACCREDITED FOR TECHNICAL COMPETENCE

| vTPH & BTEX in Soil            |       |            |            |            |           |           |
|--------------------------------|-------|------------|------------|------------|-----------|-----------|
| Our Reference:                 | UNITS | 41928-16   | 41928-17   | 41928-18   | 41928-19  | 41928-20  |
| Your Reference                 |       | BH8/1.0    | BH9/0.5    | BH9/1.0    | BH10/0.5  | BH10/1.0  |
| Date Sampled                   |       | 27/05/2010 | 28/05/2010 | 28/05/2010 | 2/06/2010 | 2/06/2010 |
| Type of sample                 |       | Soil       | Soil       | Soil       | Soil      | Soil      |
| Date extracted                 | -     | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010  | 8/6/2010  |
| Date analysed                  | -     | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010  | 8/6/2010  |
| vTPH C6 - C9                   | mg/kg | <25        | <25        | <25        | <25       | <25       |
| Benzene                        | mg/kg | <0.5       | <0.5       | <0.5       | <0.5      | <0.5      |
| Toluene                        | mg/kg | <0.5       | <0.5       | <0.5       | <0.5      | <0.5      |
| Ethylbenzene                   | mg/kg | <1.0       | <1.0       | <1.0       | <1.0      | <1.0      |
| m+p-xylene                     | mg/kg | <2.0       | <2.0       | <2.0       | <2.0      | <2.0      |
| o-Xylene                       | mg/kg | <1.0       | <1.0       | <1.0       | <1.0      | <1.0      |
| Surrogate aaa-Trifluorotoluene | %     | 122        | 120        | 115        | 115       | 121       |

| vTPH & BTEX in Soil            |       |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | 41928-21   | 41928-22   | 41928-23   | 41928-24   |
| Your Reference                 |       | Dup2       | Dup4       | Blank      | Spike      |
| Date Sampled                   |       | 28/05/2010 | 25/05/2010 | 28/05/2010 | 28/05/2010 |
| Type of sample                 |       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                 | -     | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010   |
| Date analysed                  | -     | 8/6/2010   | 9/6/2010   | 9/6/2010   | 9/6/2010   |
| vTPH C6 - C9                   | mg/kg | <25        | <25        | <25        | [NA]       |
| Benzene                        | mg/kg | <0.5       | <0.5       | <0.5       | 91%        |
| Toluene                        | mg/kg | <0.5       | <0.5       | <0.5       | 93%        |
| Ethylbenzene                   | mg/kg | <1.0       | <1.0       | <1.0       | 91%        |
| m+p-xylene                     | mg/kg | <2.0       | <2.0       | <2.0       | 92%        |
| o-Xylene                       | mg/kg | <1.0       | <1.0       | <1.0       | 91%        |
| Surrogate aaa-Trifluorotoluene | %     | 119        | 120        | 125        | 105        |



| sTPH in Soil (C10-C36) |       |            |            |           |           |           |
|------------------------|-------|------------|------------|-----------|-----------|-----------|
| Our Reference:         | UNITS | 41928-1    | 41928-2    | 41928-3   | 41928-4   | 41928-5   |
| Your Reference         |       | BH1/0.5    | BH1/1.0    | BH2/0.5   | BH3/0.5   | BH3/1.0   |
| Date Sampled           |       | 28/05/2010 | 28/05/2010 | 1/06/2010 | 2/06/2010 | 2/06/2010 |
| Type of sample         |       | Soil       | Soil       | Soil      | Soil      | Soil      |
| Date extracted         | -     | 8/6/2010   | 8/6/2010   | 8/6/2010  | 8/6/2010  | 8/6/2010  |
| Date analysed          | -     | 8/6/2010   | 8/6/2010   | 8/6/2010  | 8/6/2010  | 8/6/2010  |
| TPH C10 - C14          | mg/kg | <50        | <50        | <50       | <50       | <50       |
| TPH C15 - C28          | mg/kg | <100       | <100       | 110       | 110       | <100      |
| TPH C29 - C36          | mg/kg | <100       | <100       | <100      | <100      | <100      |
| Surrogate o-Terphenyl  | %     | 87         | 82         | 86        | 85        | 84        |

| sTPH in Soil (C10-C36) |       |            |            |            |            |            |
|------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:         | UNITS | 41928-6    | 41928-7    | 41928-8    | 41928-9    | 41928-10   |
| Your Reference         |       | BH4/0.5    | BH4/1.0    | BH5/0.5    | BH5/1.0    | BH6/0.1    |
| Date Sampled           |       | 31/05/2010 | 31/05/2010 | 31/05/2010 | 31/05/2010 | 25/05/2010 |
| Type of sample         |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted         | -     | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010   |
| Date analysed          | -     | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010   |
| TPH C10 - C14          | mg/kg | <50        | <50        | <50        | <50        | <50        |
| TPH C15 - C28          | mg/kg | <100       | <100       | <100       | <100       | <100       |
| TPH C29 - C36          | mg/kg | <100       | <100       | <100       | <100       | <100       |
| Surrogate o-Terphenyl  | %     | 89         | 76         | 81         | 75         | 74         |

| sTPH in Soil (C10-C36) |       |            |            |            |            |            |
|------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:         | UNITS | 41928-11   | 41928-12   | 41928-13   | 41928-14   | 41928-15   |
| Your Reference         |       | BH6/0.5    | BH6/1.0    | BH7/0.1    | BH7/0.5    | BH8/0.5    |
| Date Sampled           |       | 25/05/2010 | 25/05/2010 | 25/05/2010 | 25/05/2010 | 27/05/2010 |
| Type of sample         |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted         | -     | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010   |
| Date analysed          | -     | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010   |
| TPH C10 - C14          | mg/kg | <50        | <50        | <50        | <50        | <50        |
| TPH C15 - C28          | mg/kg | <100       | <100       | <100       | <100       | <100       |
| TPH C29 - C36          | mg/kg | <100       | <100       | <100       | <100       | <100       |
| Surrogate o-Terphenyl  | %     | 76         | 81         | 76         | 75         | 78         |

| sTPH in Soil (C10-C36) |       |            |            |            |           |           |
|------------------------|-------|------------|------------|------------|-----------|-----------|
| Our Reference:         | UNITS | 41928-16   | 41928-17   | 41928-18   | 41928-19  | 41928-20  |
| Your Reference         |       | BH8/1.0    | BH9/0.5    | BH9/1.0    | BH10/0.5  | BH10/1.0  |
| Date Sampled           |       | 27/05/2010 | 28/05/2010 | 28/05/2010 | 2/06/2010 | 2/06/2010 |
| Type of sample         |       | Soil       | Soil       | Soil       | Soil      | Soil      |
| Date extracted         | -     | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010  | 8/6/2010  |
| Date analysed          | -     | 8/6/2010   | 8/6/2010   | 8/6/2010   | 8/6/2010  | 8/6/2010  |
| TPH C10 - C14          | mg/kg | <50        | <50        | <50        | <50       | <50       |
| TPH C15 - C28          | mg/kg | <100       | <100       | <100       | <100      | <100      |
| TPH C29 - C36          | mg/kg | <100       | <100       | <100       | <100      | <100      |
| Surrogate o-Terphenyl  | %     | 79         | 78         | 73         | 77        | 73        |

Envirolab Reference: 41928 **Revision No:** 

R 00



Page 4 of 42

| sTPH in Soil (C10-C36) |       |            |            |            |
|------------------------|-------|------------|------------|------------|
| Our Reference:         | UNITS | 41928-21   | 41928-22   | 41928-23   |
| Your Reference         |       | Dup2       | Dup4       | Blank      |
| Date Sampled           |       | 28/05/2010 | 25/05/2010 | 28/05/2010 |
| Type of sample         |       | Soil       | Soil       | Soil       |
| Date extracted         | -     | 8/6/2010   | 8/6/2010   | 8/6/2010   |
| Date analysed          | -     | 8/6/2010   | 8/6/2010   | 8/6/2010   |
| TPH C10 - C14          | mg/kg | <50        | <50        | <50        |
| TPH C15 - C28          | mg/kg | <100       | <100       | <100       |
| TPH C29 - C36          | mg/kg | <100       | <100       | <100       |
| Surrogate o-Terphenyl  | %     | 76         | 78         | 80         |

ACCREDITED FOR TECHNICAL COMPETENCE

| PAHs in Soil              |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | 41928-1    | 41928-2    | 41928-3    | 41928-4    | 41928-5    |
| Your Reference            |       | BH1/0.5    | BH1/1.0    | BH2/0.5    | BH3/0.5    | BH3/1.0    |
| Date Sampled              |       | 28/05/2010 | 28/05/2010 | 1/06/2010  | 2/06/2010  | 2/06/2010  |
| Type of sample            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted            | -     | 09/06/2010 | 09/06/2010 | 09/06/2010 | 09/06/2010 | 09/06/2010 |
| Date analysed             | -     | 09/06/2010 | 09/06/2010 | 09/06/2010 | 09/06/2010 | 09/06/2010 |
| Naphthalene               | mg/kg | <0.1       | <0.1       | <0.1       | 0.1        | <0.1       |
| Acenaphthylene            | mg/kg | <0.1       | <0.1       | 0.6        | 0.6        | <0.1       |
| Acenaphthene              | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Fluorene                  | mg/kg | <0.1       | <0.1       | 0.1        | 0.1        | <0.1       |
| Phenanthrene              | mg/kg | 0.1        | <0.1       | 3.2        | 3.5        | <0.1       |
| Anthracene                | mg/kg | <0.1       | <0.1       | 0.5        | 0.6        | <0.1       |
| Fluoranthene              | mg/kg | 0.3        | <0.1       | 7.3        | 7.6        | <0.1       |
| Pyrene                    | mg/kg | 0.3        | <0.1       | 6.6        | 7.1        | <0.1       |
| Benzo(a)anthracene        | mg/kg | 0.2        | <0.1       | 2.8        | 3.3        | <0.1       |
| Chrysene                  | mg/kg | 0.2        | <0.1       | 2.8        | 3.5        | <0.1       |
| Benzo(b+k)fluoranthene    | mg/kg | 0.3        | <0.2       | 4.9        | 6.1        | <0.2       |
| Benzo(a)pyrene            | mg/kg | 0.2        | <0.05      | 3.5        | 4.3        | <0.05      |
| Indeno(1,2,3-c,d)pyrene   | mg/kg | <0.1       | <0.1       | 1.5        | 1.8        | <0.1       |
| Dibenzo(a,h)anthracene    | mg/kg | <0.1       | <0.1       | 0.3        | 0.4        | <0.1       |
| Benzo(g,h,i)perylene      | mg/kg | 0.1        | <0.1       | 1.4        | 1.6        | <0.1       |
| Surrogate p-Terphenyl-d14 | %     | 108        | 108        | 109        | 109        | 110        |
|                           |       |            |            |            |            |            |

71682, Parramatta

**Client Reference:** 

| PAHs in Soil              |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | 41928-6    | 41928-7    | 41928-8    | 41928-9    | 41928-10   |
| Your Reference            |       | BH4/0.5    | BH4/1.0    | BH5/0.5    | BH5/1.0    | BH6/0.1    |
| Date Sampled              |       | 31/05/2010 | 31/05/2010 | 31/05/2010 | 31/05/2010 | 25/05/2010 |
| Type of sample            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted            | -     | 09/06/2010 | 09/06/2010 | 09/06/2010 | 09/06/2010 | 09/06/2010 |
| Date analysed             | -     | 09/06/2010 | 09/06/2010 | 09/06/2010 | 09/06/2010 | 09/06/2010 |
| Naphthalene               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Acenaphthylene            | mg/kg | <0.1       | <0.1       | 0.2        | <0.1       | <0.1       |
| Acenaphthene              | mg/kg | <0.1       | <0.1       | 0.3        | <0.1       | <0.1       |
| Fluorene                  | mg/kg | <0.1       | <0.1       | 0.2        | <0.1       | <0.1       |
| Phenanthrene              | mg/kg | 0.1        | <0.1       | 4.6        | 0.4        | <0.1       |
| Anthracene                | mg/kg | <0.1       | <0.1       | 0.8        | <0.1       | <0.1       |
| Fluoranthene              | mg/kg | 0.2        | <0.1       | 6.7        | 0.8        | 0.2        |
| Pyrene                    | mg/kg | 0.2        | <0.1       | 5.9        | 0.8        | 0.2        |
| Benzo(a)anthracene        | mg/kg | <0.1       | <0.1       | 2.7        | 0.4        | 0.1        |
| Chrysene                  | mg/kg | 0.1        | <0.1       | 2.7        | 0.4        | 0.1        |
| Benzo(b+k)fluoranthene    | mg/kg | <0.2       | <0.2       | 4.0        | 0.7        | 0.2        |
| Benzo(a)pyrene            | mg/kg | 0.09       | <0.05      | 2.7        | 0.4        | 0.1        |
| Indeno(1,2,3-c,d)pyrene   | mg/kg | <0.1       | <0.1       | 1.0        | 0.2        | <0.1       |
| Dibenzo(a,h)anthracene    | mg/kg | <0.1       | <0.1       | 0.2        | <0.1       | <0.1       |
| Benzo(g,h,i)perylene      | mg/kg | <0.1       | <0.1       | 0.9        | 0.2        | <0.1       |
| Surrogate p-Terphenyl-d14 | %     | 108        | 107        | 111        | 112        | 114        |

#### Envirolab Reference: 41 Revision No: R

41928 R 00



| Client Reference: | 71682, Parramatta |
|-------------------|-------------------|
|-------------------|-------------------|

| PAHs in Soil              |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | 41928-11   | 41928-12   | 41928-13   | 41928-14   | 41928-15   |
| Your Reference            |       | BH6/0.5    | BH6/1.0    | BH7/0.1    | BH7/0.5    | BH8/0.5    |
| Date Sampled              |       | 25/05/2010 | 25/05/2010 | 25/05/2010 | 25/05/2010 | 27/05/2010 |
| Type of sample            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted            | -     | 09/06/2010 | 09/06/2010 | 09/06/2010 | 09/06/2010 | 09/06/2010 |
| Date analysed             | -     | 09/06/2010 | 09/06/2010 | 09/06/2010 | 09/06/2010 | 09/06/2010 |
| Naphthalene               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Acenaphthylene            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Acenaphthene              | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Fluorene                  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Phenanthrene              | mg/kg | <0.1       | <0.1       | 0.3        | 0.4        | <0.1       |
| Anthracene                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Fluoranthene              | mg/kg | <0.1       | 0.1        | 0.4        | 0.9        | <0.1       |
| Pyrene                    | mg/kg | <0.1       | 0.1        | 0.4        | 0.9        | <0.1       |
| Benzo(a)anthracene        | mg/kg | <0.1       | <0.1       | 0.2        | 0.4        | <0.1       |
| Chrysene                  | mg/kg | <0.1       | <0.1       | 0.2        | 0.5        | <0.1       |
| Benzo(b+k)fluoranthene    | mg/kg | <0.2       | <0.2       | 0.3        | 0.7        | <0.2       |
| Benzo(a)pyrene            | mg/kg | <0.05      | 0.06       | 0.1        | 0.4        | <0.05      |
| Indeno(1,2,3-c,d)pyrene   | mg/kg | <0.1       | <0.1       | <0.1       | 0.2        | <0.1       |
| Dibenzo(a,h)anthracene    | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Benzo(g,h,i)perylene      | mg/kg | <0.1       | <0.1       | <0.1       | 0.1        | <0.1       |
| Surrogate p-Terphenyl-d14 | %     | 109        | 107        | 110        | 108        | 110        |

| PAHs in Soil              |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | 41928-16   | 41928-17   | 41928-18   | 41928-19   | 41928-20   |
| Your Reference            |       | BH8/1.0    | BH9/0.5    | BH9/1.0    | BH10/0.5   | BH10/1.0   |
| Date Sampled              |       | 27/05/2010 | 28/05/2010 | 28/05/2010 | 2/06/2010  | 2/06/2010  |
| Type of sample            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted            | -     | 09/06/2010 | 09/06/2010 | 09/06/2010 | 09/06/2010 | 09/06/2010 |
| Date analysed             | -     | 09/06/2010 | 09/06/2010 | 09/06/2010 | 09/06/2010 | 09/06/2010 |
| Naphthalene               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Acenaphthylene            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Acenaphthene              | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Fluorene                  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Phenanthrene              | mg/kg | 0.2        | <0.1       | <0.1       | <0.1       | 0.3        |
| Anthracene                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Fluoranthene              | mg/kg | 0.3        | <0.1       | <0.1       | <0.1       | 0.5        |
| Pyrene                    | mg/kg | 0.3        | <0.1       | <0.1       | <0.1       | 0.4        |
| Benzo(a)anthracene        | mg/kg | 0.1        | <0.1       | <0.1       | <0.1       | 0.2        |
| Chrysene                  | mg/kg | 0.2        | <0.1       | <0.1       | <0.1       | 0.2        |
| Benzo(b+k)fluoranthene    | mg/kg | 0.2        | <0.2       | <0.2       | <0.2       | 0.4        |
| Benzo(a)pyrene            | mg/kg | 0.1        | <0.05      | <0.05      | <0.05      | 0.2        |
| Indeno(1,2,3-c,d)pyrene   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Dibenzo(a,h)anthracene    | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Benzo(g,h,i)perylene      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate p-Terphenyl-d14 | %     | 108        | 111        | 109        | 105        | 107        |

ACCREDITED FOR TECHNICAL COMPETENCE

| PAHs in Soil              |       |            |            |            |
|---------------------------|-------|------------|------------|------------|
| Our Reference:            | UNITS | 41928-21   | 41928-22   | 41928-23   |
| Your Reference            |       | Dup2       | Dup4       | Blank      |
| Date Sampled              |       | 28/05/2010 | 25/05/2010 | 28/05/2010 |
| Type of sample            |       | Soil       | Soil       | Soil       |
| Date extracted            | -     | 09/06/2010 | 09/06/2010 | 09/06/2010 |
| Date analysed             | -     | 09/06/2010 | 09/06/2010 | 09/06/2010 |
| Naphthalene               | mg/kg | <0.1       | <0.1       | <0.1       |
| Acenaphthylene            | mg/kg | <0.1       | <0.1       | <0.1       |
| Acenaphthene              | mg/kg | <0.1       | <0.1       | <0.1       |
| Fluorene                  | mg/kg | <0.1       | <0.1       | <0.1       |
| Phenanthrene              | mg/kg | 0.1        | <0.1       | <0.1       |
| Anthracene                | mg/kg | <0.1       | <0.1       | <0.1       |
| Fluoranthene              | mg/kg | 0.2        | <0.1       | <0.1       |
| Pyrene                    | mg/kg | 0.2        | <0.1       | <0.1       |
| Benzo(a)anthracene        | mg/kg | <0.1       | <0.1       | <0.1       |
| Chrysene                  | mg/kg | 0.1        | <0.1       | <0.1       |
| Benzo(b+k)fluoranthene    | mg/kg | <0.2       | <0.2       | <0.2       |
| Benzo(a)pyrene            | mg/kg | 0.06       | <0.05      | <0.05      |
| Indeno(1,2,3-c,d)pyrene   | mg/kg | <0.1       | <0.1       | <0.1       |
| Dibenzo(a,h)anthracene    | mg/kg | <0.1       | <0.1       | <0.1       |
| Benzo(g,h,i)perylene      | mg/kg | <0.1       | <0.1       | <0.1       |
| Surrogate p-Terphenyl-d14 | %     | 113        | 107        | 117        |
|                           |       |            |            |            |

Envirolab Reference: 41928 **Revision No:** 

R 00



| Organochlorine Pesticides in soil |       |            |            |            |            |            |
|-----------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                    | UNITS | 41928-1    | 41928-2    | 41928-3    | 41928-4    | 41928-5    |
| Your Reference                    |       | BH1/0.5    | BH1/1.0    | BH2/0.5    | BH3/0.5    | BH3/1.0    |
| Date Sampled                      |       | 28/05/2010 | 28/05/2010 | 1/06/2010  | 2/06/2010  | 2/06/2010  |
| Type of sample                    |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                    | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed                     | -     | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 |
| НСВ                               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| alpha-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| gamma-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| beta-BHC                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Heptachlor                        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| delta-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aldrin                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Heptachlor Epoxide                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| gamma-Chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| alpha-chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan I                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDE                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Dieldrin                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endrin                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDD                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan II                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDT                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endrin Aldehyde                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan Sulphate               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Methoxychlor                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCLMX                   | %     | 95         | 98         | 98         | 99         | 98         |

| Organochlorine Pesticides in soil |       |            |            |            |            |            |
|-----------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                    | UNITS | 41928-6    | 41928-7    | 41928-8    | 41928-9    | 41928-10   |
| Your Reference                    |       | BH4/0.5    | BH4/1.0    | BH5/0.5    | BH5/1.0    | BH6/0.1    |
| Date Sampled                      |       | 31/05/2010 | 31/05/2010 | 31/05/2010 | 31/05/2010 | 25/05/2010 |
| Type of sample                    |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                    | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed                     | -     | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 |
| НСВ                               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| alpha-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| gamma-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| beta-BHC                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Heptachlor                        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| delta-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aldrin                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Heptachlor Epoxide                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| gamma-Chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| alpha-chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan I                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDE                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Dieldrin                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endrin                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDD                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan II                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDT                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endrin Aldehyde                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan Sulphate               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Methoxychlor                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCLMX                   | %     | 101        | 97         | 99         | 96         | 101        |

| Organochlorine Pesticides in soil |       |            |            |            |            |            |
|-----------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                    | UNITS | 41928-11   | 41928-12   | 41928-13   | 41928-14   | 41928-15   |
| Your Reference                    |       | BH6/0.5    | BH6/1.0    | BH7/0.1    | BH7/0.5    | BH8/0.5    |
| Date Sampled                      |       | 25/05/2010 | 25/05/2010 | 25/05/2010 | 25/05/2010 | 27/05/2010 |
| Type of sample                    |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                    | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed                     | -     | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 |
| НСВ                               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| alpha-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| gamma-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| beta-BHC                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Heptachlor                        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| delta-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aldrin                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Heptachlor Epoxide                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| gamma-Chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| alpha-chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan I                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDE                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Dieldrin                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endrin                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDD                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan II                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDT                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endrin Aldehyde                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan Sulphate               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Methoxychlor                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCLMX                   | %     | 95         | 97         | 98         | 98         | 94         |



| Organochlorine Pesticides in soil |       |            |            |            |            |            |
|-----------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                    | UNITS | 41928-16   | 41928-17   | 41928-18   | 41928-19   | 41928-20   |
| Your Reference                    |       | BH8/1.0    | BH9/0.5    | BH9/1.0    | BH10/0.5   | BH10/1.0   |
| Date Sampled                      |       | 27/05/2010 | 28/05/2010 | 28/05/2010 | 2/06/2010  | 2/06/2010  |
| Type of sample                    |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted                    | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed                     | -     | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 |
| НСВ                               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| alpha-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| gamma-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| beta-BHC                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Heptachlor                        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| delta-BHC                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aldrin                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Heptachlor Epoxide                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| gamma-Chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| alpha-chlordane                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan I                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDE                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Dieldrin                          | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endrin                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDD                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan II                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| pp-DDT                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endrin Aldehyde                   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan Sulphate               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Methoxychlor                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCLMX                   | %     | 97         | 100        | 93         | 98         | 99         |

| Organochlorine Pesticides in soil |       |            |            |
|-----------------------------------|-------|------------|------------|
| Our Reference:                    | UNITS | 41928-21   | 41928-22   |
| Your Reference                    |       | Dup2       | Dup4       |
| Date Sampled                      |       | 28/05/2010 | 25/05/2010 |
| Type of sample                    |       | Soil       | Soil       |
| Date extracted                    | -     | 08/06/2010 | 08/06/2010 |
| Date analysed                     | -     | 10/06/2010 | 10/06/2010 |
| НСВ                               | mg/kg | <0.1       | <0.1       |
| alpha-BHC                         | mg/kg | <0.1       | <0.1       |
| gamma-BHC                         | mg/kg | <0.1       | <0.1       |
| beta-BHC                          | mg/kg | <0.1       | <0.1       |
| Heptachlor                        | mg/kg | <0.1       | <0.1       |
| delta-BHC                         | mg/kg | <0.1       | <0.1       |
| Aldrin                            | mg/kg | <0.1       | <0.1       |
| Heptachlor Epoxide                | mg/kg | <0.1       | <0.1       |
| gamma-Chlordane                   | mg/kg | <0.1       | <0.1       |
| alpha-chlordane                   | mg/kg | <0.1       | <0.1       |
| Endosulfan I                      | mg/kg | <0.1       | <0.1       |
| pp-DDE                            | mg/kg | <0.1       | <0.1       |
| Dieldrin                          | mg/kg | <0.1       | <0.1       |
| Endrin                            | mg/kg | <0.1       | <0.1       |
| pp-DDD                            | mg/kg | <0.1       | <0.1       |
| Endosulfan II                     | mg/kg | <0.1       | <0.1       |
| pp-DDT                            | mg/kg | <0.1       | <0.1       |
| Endrin Aldehyde                   | mg/kg | <0.1       | <0.1       |
| Endosulfan Sulphate               | mg/kg | <0.1       | <0.1       |
| Methoxychlor                      | mg/kg | <0.1       | <0.1       |
| Surrogate TCLMX                   | %     | 96         | 98         |

Client Reference: 71682,

71682, Parramatta

| Organophosphorus Pesticides |       |            |            |            |            |            |
|-----------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:              | UNITS | 41928-1    | 41928-2    | 41928-3    | 41928-4    | 41928-5    |
| Your Reference              |       | BH1/0.5    | BH1/1.0    | BH2/0.5    | BH3/0.5    | BH3/1.0    |
| Date Sampled                |       | 28/05/2010 | 28/05/2010 | 1/06/2010  | 2/06/2010  | 2/06/2010  |
| Type of sample              |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted              | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed               | -     | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 |
| Diazinon                    | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Dimethoate                  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Chlorpyriphos-methyl        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Ronnel                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Chlorpyriphos               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Fenitrothion                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Bromophos-ethyl             | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Ethion                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCLMX             | %     | 95         | 98         | 98         | 99         | 98         |
|                             |       |            |            |            |            |            |
| Organophosphorus Pesticides |       |            |            |            |            |            |
| Our Reference:              | UNITS | 41928-6    | 41928-7    | 41928-8    | 41928-9    | 41928-10   |
| Your Reference              |       | BH4/0.5    | BH4/1.0    | BH5/0.5    | BH5/1.0    | BH6/0.1    |
| Date Sampled                |       | 31/05/2010 | 31/05/2010 | 31/05/2010 | 31/05/2010 | 25/05/2010 |
| Type of sample              |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted              | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed               | -     | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 |
| Diazinon                    | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Dimethoate                  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Chlorpyriphos-methyl        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Ronnel                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Chlorpyriphos               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Fenitrothion                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Bromophos-ethyl             | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Ethion                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCLMX             | %     | 101        | 97         | 99         | 96         | 101        |

Envirolab Reference: 41928 **Revision No:** R 00



| Organophosphorus Pesticides |       |            |            |            |            |            |
|-----------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:              | UNITS | 41928-11   | 41928-12   | 41928-13   | 41928-14   | 41928-15   |
| Your Reference              |       | BH6/0.5    | BH6/1.0    | BH7/0.1    | BH7/0.5    | BH8/0.5    |
| Date Sampled                |       | 25/05/2010 | 25/05/2010 | 25/05/2010 | 25/05/2010 | 27/05/2010 |
| Type of sample              |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted              | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed               | -     | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 |
| Diazinon                    | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Dimethoate                  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Chlorpyriphos-methyl        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Ronnel                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Chlorpyriphos               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Fenitrothion                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Bromophos-ethyl             | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Ethion                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCLMX             | %     | 95         | 97         | 98         | 98         | 94         |
|                             | 1     | Γ          |            |            | Γ          | Γ          |
| Organophosphorus Pesticides |       |            |            |            |            |            |
| Our Reference:              | UNITS | 41928-16   | 41928-17   | 41928-18   | 41928-19   | 41928-20   |
| Your Reference              |       | BH8/1.0    | BH9/0.5    | BH9/1.0    | BH10/0.5   | BH10/1.0   |
| Date Sampled                |       | 27/05/2010 | 28/05/2010 | 28/05/2010 | 2/06/2010  | 2/06/2010  |
| Type of sample              |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted              | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed               | -     | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 |
| Diazinon                    | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Dimethoate                  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Chlorpyriphos-methyl        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Ronnel                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |

<0.1

<0.1

<0.1

<0.1

97

<0.1

<0.1

<0.1

<0.1

100

<0.1

<0.1

<0.1

<0.1

93

<0.1

<0.1

<0.1

<0.1

98

<0.1

<0.1

<0.1

<0.1

99

#### **Client Reference:** 71682, Parramatta

Envirolab Reference: **Revision No:** 

Chlorpyriphos

Fenitrothion

Bromophos-ethyl

Ethion

Surrogate TCLMX

41928 R 00

mg/kg

mg/kg

mg/kg

mg/kg

%


| Organophosphorus Pesticides |       |            |            |
|-----------------------------|-------|------------|------------|
| Our Reference:              | UNITS | 41928-21   | 41928-22   |
| Your Reference              |       | Dup2       | Dup4       |
| Date Sampled                |       | 28/05/2010 | 25/05/2010 |
| Type of sample              |       | Soil       | Soil       |
| Date extracted              | -     | 08/06/2010 | 08/06/2010 |
| Date analysed               | -     | 10/06/2010 | 10/06/2010 |
| Diazinon                    | mg/kg | <0.1       | <0.1       |
| Dimethoate                  | mg/kg | <0.1       | <0.1       |
| Chlorpyriphos-methyl        | mg/kg | <0.1       | <0.1       |
| Ronnel                      | mg/kg | <0.1       | <0.1       |
| Chlorpyriphos               | mg/kg | <0.1       | <0.1       |
| Fenitrothion                | mg/kg | <0.1       | <0.1       |
| Bromophos-ethyl             | mg/kg | <0.1       | <0.1       |
| Ethion                      | mg/kg | <0.1       | <0.1       |
| Surrogate TCLMX             | %     | 96         | 98         |



| PCBs in Soil    |       |            |            |            |            |            |
|-----------------|-------|------------|------------|------------|------------|------------|
| Our Reference:  | UNITS | 41928-1    | 41928-2    | 41928-3    | 41928-4    | 41928-5    |
| Your Reference  |       | BH1/0.5    | BH1/1.0    | BH2/0.5    | BH3/0.5    | BH3/1.0    |
| Date Sampled    |       | 28/05/2010 | 28/05/2010 | 1/06/2010  | 2/06/2010  | 2/06/2010  |
| Type of sample  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted  | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed   | -     | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 |
| Arochlor 1016   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1221*  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1232   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1242   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1248   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1254   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1260   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCLMX | %     | 95         | 98         | 98         | 99         | 98         |

| PCBs in Soil    |       |            |            |            |            |            |
|-----------------|-------|------------|------------|------------|------------|------------|
| Our Reference:  | UNITS | 41928-6    | 41928-7    | 41928-8    | 41928-9    | 41928-10   |
| Your Reference  |       | BH4/0.5    | BH4/1.0    | BH5/0.5    | BH5/1.0    | BH6/0.1    |
| Date Sampled    |       | 31/05/2010 | 31/05/2010 | 31/05/2010 | 31/05/2010 | 25/05/2010 |
| Type of sample  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted  | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed   | -     | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 |
| Arochlor 1016   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1221*  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1232   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1242   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1248   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1254   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1260   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCLMX | %     | 101        | 97         | 99         | 96         | 101        |

| PCBs in Soil    |       |            |            |            |            |            |
|-----------------|-------|------------|------------|------------|------------|------------|
| Our Reference:  | UNITS | 41928-11   | 41928-12   | 41928-13   | 41928-14   | 41928-15   |
| Your Reference  |       | BH6/0.5    | BH6/1.0    | BH7/0.1    | BH7/0.5    | BH8/0.5    |
| Date Sampled    |       | 25/05/2010 | 25/05/2010 | 25/05/2010 | 25/05/2010 | 27/05/2010 |
| Type of sample  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted  | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed   | -     | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 |
| Arochlor 1016   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1221*  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1232   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1242   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1248   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1254   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1260   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCLMX | %     | 95         | 97         | 98         | 98         | 94         |



| PCBs in Soil    |       |            |            |            |            |            |
|-----------------|-------|------------|------------|------------|------------|------------|
| Our Reference:  | UNITS | 41928-16   | 41928-17   | 41928-18   | 41928-19   | 41928-20   |
| Your Reference  |       | BH8/1.0    | BH9/0.5    | BH9/1.0    | BH10/0.5   | BH10/1.0   |
| Date Sampled    |       | 27/05/2010 | 28/05/2010 | 28/05/2010 | 2/06/2010  | 2/06/2010  |
| Type of sample  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted  | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed   | -     | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 | 10/06/2010 |
| Arochlor 1016   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1221*  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1232   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1242   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1248   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1254   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Arochlor 1260   | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Surrogate TCLMX | %     | 97         | 100        | 93         | 98         | 99         |

| PCBs in Soil    |       |            |            |
|-----------------|-------|------------|------------|
| Our Reference:  | UNITS | 41928-21   | 41928-22   |
| Your Reference  |       | Dup2       | Dup4       |
| Date Sampled    |       | 28/05/2010 | 25/05/2010 |
| Type of sample  |       | Soil       | Soil       |
| Date extracted  | -     | 08/06/2010 | 08/06/2010 |
| Date analysed   | -     | 10/06/2010 | 10/06/2010 |
| Arochlor 1016   | mg/kg | <0.1       | <0.1       |
| Arochlor 1221*  | mg/kg | <0.1       | <0.1       |
| Arochlor 1232   | mg/kg | <0.1       | <0.1       |
| Arochlor 1242   | mg/kg | <0.1       | <0.1       |
| Arochlor 1248   | mg/kg | <0.1       | <0.1       |
| Arochlor 1254   | mg/kg | <0.1       | <0.1       |
| Arochlor 1260   | mg/kg | <0.1       | <0.1       |
| Surrogate TCLMX | %     | 96         | 98         |



| Total Phenolics in Soil     |       |            |            |            |            |            |
|-----------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:              | UNITS | 41928-1    | 41928-2    | 41928-3    | 41928-4    | 41928-5    |
| Your Reference              |       | BH1/0.5    | BH1/1.0    | BH2/0.5    | BH3/0.5    | BH3/1.0    |
| Date Sampled                |       | 28/05/2010 | 28/05/2010 | 1/06/2010  | 2/06/2010  | 2/06/2010  |
| Type of sample              |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted              | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed               | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Total Phenolics (as Phenol) | ma/ka | <5.0       | <5.0       | <5.0       | <5.0       | <5.0       |
|                             | 3 3   |            |            |            |            |            |
| Total Phenolics in Soil     |       |            |            |            |            |            |
| Our Reference:              | UNITS | 41928-6    | 41928-7    | 41928-8    | 41928-9    | 41928-10   |
| Your Reference              |       | BH4/0.5    | BH4/1.0    | BH5/0.5    | BH5/1.0    | BH6/0.1    |
| Date Sampled                |       | 31/05/2010 | 31/05/2010 | 31/05/2010 | 31/05/2010 | 25/05/2010 |
| Type of sample              |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted              | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed               | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Total Phenolics (as Phenol) | ma/ka | <5.0       | <5.0       | <5.0       | <5.0       | <5.0       |
|                             | 3 3   |            |            |            |            |            |
| Total Phenolics in Soil     |       |            |            |            |            |            |
| Our Reference:              | UNITS | 41928-11   | 41928-12   | 41928-13   | 41928-14   | 41928-15   |
| Your Reference              |       | BH6/0.5    | BH6/1.0    | BH7/0.1    | BH7/0.5    | BH8/0.5    |
| Date Sampled                |       | 25/05/2010 | 25/05/2010 | 25/05/2010 | 25/05/2010 | 27/05/2010 |
| Type of sample              |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted              | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed               | _     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Total Phenolics (as Phenol) | ma/ka | <5.0       | <5.0       | <5.0       | <5.0       | <5.0       |
|                             | 3 3   |            |            |            |            |            |
| Total Phenolics in Soil     |       |            |            |            |            |            |
| Our Reference:              | UNITS | 41928-16   | 41928-17   | 41928-18   | 41928-19   | 41928-20   |
| Your Reference              |       | BH8/1.0    | BH9/0.5    | BH9/1.0    | BH10/0.5   | BH10/1.0   |
| Date Sampled                |       | 27/05/2010 | 28/05/2010 | 28/05/2010 | 2/06/2010  | 2/06/2010  |
| Type of sample              |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date extracted              | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed               | _     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Total Phenolics (as Phenol) | ma/ka | <5.0       | <5.0       | <5.0       | <5.0       | <5.0       |
|                             |       |            |            |            |            |            |
| Total Phenolics in Soil     |       |            |            |            |            |            |
| Our Reference:              | UNITS | 41928-21   | 41928-22   |            |            |            |
| Your Reference              |       | Dup2       | Dup4       |            |            |            |
| Date Sampled                |       | 28/05/2010 | 25/05/2010 |            |            |            |
| Type of sample              |       | Soil       | Soil       |            |            |            |
| Date extracted              | -     | 08/06/2010 | 08/06/2010 | 1          |            |            |
| Date analysed               | _     | 08/06/2010 | 08/06/2010 |            |            |            |
| Date analyseu               | -     | 00/00/2010 | 00/00/2010 |            |            |            |

Total Phenolics (as Phenol)



<5.0

<5.0

mg/kg

| Acid Extractable metals in soil |       |            |            |            |            |            |
|---------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                  | UNITS | 41928-1    | 41928-2    | 41928-3    | 41928-4    | 41928-5    |
| Your Reference                  |       | BH1/0.5    | BH1/1.0    | BH2/0.5    | BH3/0.5    | BH3/1.0    |
| Date Sampled                    |       | 28/05/2010 | 28/05/2010 | 1/06/2010  | 2/06/2010  | 2/06/2010  |
| Type of sample                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date digested                   | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed                   | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Arsenic                         | mg/kg | 4          | <4         | 4          | <4         | 4          |
| Cadmium                         | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Chromium                        | mg/kg | 18         | 3          | 11         | 7          | 18         |
| Copper                          | mg/kg | 140        | 4          | 44         | 23         | 20         |
| Lead                            | mg/kg | 380        | 9          | 520        | 140        | 210        |
| Mercury                         | mg/kg | 0.2        | <0.1       | 0.5        | 0.1        | 0.4        |
| Nickel                          | mg/kg | 27         | 3          | 12         | 14         | 4          |
| Zinc                            | mg/kg | 1,700      | 7          | 110        | 79         | 15         |

| Acid Extractable metals in soil |       |            |            |            |            |            |
|---------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                  | UNITS | 41928-6    | 41928-7    | 41928-8    | 41928-9    | 41928-10   |
| Your Reference                  |       | BH4/0.5    | BH4/1.0    | BH5/0.5    | BH5/1.0    | BH6/0.1    |
| Date Sampled                    |       | 31/05/2010 | 31/05/2010 | 31/05/2010 | 31/05/2010 | 25/05/2010 |
| Type of sample                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date digested                   | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed                   | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Arsenic                         | mg/kg | <4         | <4         | <4         | 36         | 9          |
| Cadmium                         | mg/kg | <0.5       | <0.5       | <0.5       | 1.4        | <0.5       |
| Chromium                        | mg/kg | 5          | 6          | 10         | 40         | 10         |
| Copper                          | mg/kg | 10         | 5          | 28         | 270        | 47         |
| Lead                            | mg/kg | 37         | 10         | 320        | 1,500      | 570        |
| Mercury                         | mg/kg | 0.2        | <0.1       | 0.2        | 14         | 0.6        |
| Nickel                          | mg/kg | 5          | 3          | 13         | 32         | 32         |
| Zinc                            | mg/kg | 34         | 11         | 150        | 1,800      | 63         |

| Acid Extractable metals in soil |       |            |            |            |            |            |
|---------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                  | UNITS | 41928-11   | 41928-12   | 41928-13   | 41928-14   | 41928-15   |
| Your Reference                  |       | BH6/0.5    | BH6/1.0    | BH7/0.1    | BH7/0.5    | BH8/0.5    |
| Date Sampled                    |       | 25/05/2010 | 25/05/2010 | 25/05/2010 | 25/05/2010 | 27/05/2010 |
| Type of sample                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date digested                   | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed                   | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Arsenic                         | mg/kg | <4         | 5          | <4         | <4         | <4         |
| Cadmium                         | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Chromium                        | mg/kg | 2          | 4          | 10         | 7          | 11         |
| Copper                          | mg/kg | 3          | 8          | 49         | 170        | 68         |
| Lead                            | mg/kg | 6          | 90         | 100        | 170        | 5          |
| Mercury                         | mg/kg | 0.1        | 0.1        | <0.1       | 0.1        | <0.1       |
| Nickel                          | mg/kg | 2          | 4          | 52         | 24         | 82         |
| Zinc                            | mg/kg | 6          | 150        | 73         | 110        | 41         |



| Acid Extractable metals in soil |       |            |            |            |            |            |
|---------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                  | UNITS | 41928-16   | 41928-17   | 41928-18   | 41928-19   | 41928-20   |
| Your Reference                  |       | BH8/1.0    | BH9/0.5    | BH9/1.0    | BH10/0.5   | BH10/1.0   |
| Date Sampled                    |       | 27/05/2010 | 28/05/2010 | 28/05/2010 | 2/06/2010  | 2/06/2010  |
| Type of sample                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date digested                   | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Date analysed                   | -     | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 | 08/06/2010 |
| Arsenic                         | mg/kg | 28         | <4         | <4         | <4         | 4          |
| Cadmium                         | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Chromium                        | mg/kg | 5          | 3          | 3          | 8          | 12         |
| Copper                          | mg/kg | 12         | 4          | 3          | 9          | 31         |
| Lead                            | mg/kg | 170        | 61         | 13         | 240        | 260        |
| Mercury                         | mg/kg | 0.1        | <0.1       | <0.1       | 0.1        | 0.1        |
| Nickel                          | mg/kg | 3          | 2          | 2          | 4          | 5          |
| Zinc                            | mg/kg | 87         | 14         | 7          | 38         | 220        |

| Acid Extractable metals in soil |       |            |            |
|---------------------------------|-------|------------|------------|
| Our Reference:                  | UNITS | 41928-21   | 41928-22   |
| Your Reference                  |       | Dup2       | Dup4       |
| Date Sampled                    |       | 28/05/2010 | 25/05/2010 |
| Type of sample                  |       | Soil       | Soil       |
| Date digested                   | -     | 08/06/2010 | 08/06/2010 |
| Date analysed                   | -     | 08/06/2010 | 08/06/2010 |
| Arsenic                         | mg/kg | 6          | <4         |
| Cadmium                         | mg/kg | <0.5       | <0.5       |
| Chromium                        | mg/kg | 4          | 3          |
| Copper                          | mg/kg | 10         | 3          |
| Lead                            | mg/kg | 67         | 7          |
| Mercury                         | mg/kg | 1.0        | <0.1       |
| Nickel                          | mg/kg | 4          | 2          |
| Zinc                            | mg/kg | 150        | 6          |



| Moisturo       |       |                    |                    |                  |                                             |                   |
|----------------|-------|--------------------|--------------------|------------------|---------------------------------------------|-------------------|
|                |       | 11020 1            | 11020 2            | 11020 2          | 11000 4                                     | 11000 F           |
|                |       | 8H1/0 5            | 8H1/1 0            | 8H2/0 5          | 41320-4<br>BH3/0 5                          | 41920-0<br>BH3/10 |
| Dete Sampled   |       | DFT/0.0            | DF1/1.0            | DH2/0.0          | 2/06/2010                                   | 2/06/2010         |
|                |       | 20/05/2010<br>Soil | 20/03/2010<br>Sail | 900/2010<br>Soil | 2/00/2010<br>Soil                           | 2/00/2010<br>Soil |
|                |       | 3011               | 3011               | 3011             | 3011                                        | 3011              |
| Date prepared  | -     | 8/6/2010           | 8/6/2010           | 8/6/2010         | 8/6/2010                                    | 8/6/2010          |
| Date analysed  | -     | 8/6/2010           | 8/6/2010           | 8/6/2010         | 8/6/2010                                    | 8/6/2010          |
| Moisture       | %     | 7.9                | 3.7                | 14               | 10                                          | 12                |
|                |       |                    |                    |                  |                                             |                   |
| Moisture       |       | 44000.0            | 44000 7            | 44000.0          | 44000.0                                     | 44000 40          |
| Our Reference: | UNITS | 41928-6            | 41928-7            | 41928-8          | 41928-9                                     | 41928-10          |
| Your Reference |       | BH4/0.5            | BH4/1.0            | BH5/0.5          | BH5/1.0                                     | BH6/0.1           |
| Date Sampled   |       | 31/05/2010         | 31/05/2010         | 31/05/2010       | 31/05/2010                                  | 25/05/2010        |
|                |       | 501                | 501                | 501              | 5011                                        | 5011              |
| Date prepared  | -     | 8/6/2010           | 8/6/2010           | 8/6/2010         | 8/6/2010                                    | 8/6/2010          |
| Date analysed  | -     | 8/6/2010           | 8/6/2010           | 8/6/2010         | 8/6/2010                                    | 8/6/2010          |
| Moisture       | %     | 6.5                | 7.7                | 11               | 12                                          | 14                |
|                |       |                    |                    |                  |                                             |                   |
| Moisture       |       |                    |                    |                  |                                             |                   |
| Our Reference: | UNITS | 41928-11           | 41928-12           | 41928-13         | 41928-14                                    | 41928-15          |
| Your Reference |       | BH6/0.5            | BH6/1.0            | BH7/0.1          | BH7/0.5                                     | BH8/0.5           |
| Date Sampled   |       | 25/05/2010         | 25/05/2010         | 25/05/2010       | 25/05/2010                                  | 27/05/2010        |
| Type of sample |       | Soil               | Soil               | Soil             | Soil                                        | Soil              |
| Date prepared  | -     | 8/6/2010           | 8/6/2010           | 8/6/2010         | 8/6/2010                                    | 8/6/2010          |
| Date analysed  | -     | 8/6/2010           | 8/6/2010           | 8/6/2010         | 8/6/2010                                    | 8/6/2010          |
| Moisture       | %     | 3.9                | 5.6                | 8.3              | 6.8                                         | 4.6               |
|                |       | 1                  |                    |                  |                                             |                   |
| Moisture       |       |                    |                    |                  |                                             |                   |
| Our Reference: | UNITS | 41928-16           | 41928-17           | 41928-18         | 41928-19                                    | 41928-20          |
| Your Reference |       | BH8/1.0            | BH9/0.5            | BH9/1.0          | BH10/0.5                                    | BH10/1.0          |
| Date Sampled   |       | 27/05/2010         | 28/05/2010         | 28/05/2010       | 2/06/2010                                   | 2/06/2010         |
| Type of sample |       | Soil               | Soil               | Soil             | Soil                                        | Soil              |
| Date prepared  | -     | 8/6/2010           | 8/6/2010           | 8/6/2010         | 8/6/2010                                    | 8/6/2010          |
| Date analysed  | -     | 8/6/2010           | 8/6/2010           | 8/6/2010         | 8/6/2010                                    | 8/6/2010          |
| Moisture       | %     | 7.0                | 4.7                | 4.3              | 8.7                                         | 11                |
|                | 1     | 1                  | 1                  | 1                | <u>ــــــــــــــــــــــــــــــــــــ</u> | 1                 |
| Moisture       |       |                    |                    |                  |                                             |                   |
| Our Reference: | UNITS | 41928-21           | 41928-22           | 41928-23         |                                             |                   |
| Your Reference |       | Dup2               | Dup4               | Blank            |                                             |                   |
| Date Sampled   |       | 28/05/2010         | 25/05/2010         | 28/05/2010       |                                             |                   |
| Type of sample |       | Soil               | Soil               | Soil             |                                             |                   |
| Date prepared  | -     | 8/6/2010           | 8/6/2010           | 8/6/2010         | 1                                           |                   |
| Date analysed  | -     | 8/6/2010           | 8/6/2010           | 8/6/2010         |                                             |                   |
| Moisture       | %     | 8.0                | 3.6                | 0.10             |                                             |                   |



| Asbestos ID - soils |       |                                                          |                                                          |                                                          |                                                          |                                                          |
|---------------------|-------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Our Reference:      | UNITS | 41928-1                                                  | 41928-3                                                  | 41928-4                                                  | 41928-5                                                  | 41928-8                                                  |
| Your Reference      |       | BH1/0.5                                                  | BH2/0.5                                                  | BH3/0.5                                                  | BH3/1.0                                                  | BH5/0.5                                                  |
| Date Sampled        |       | 28/05/2010                                               | 1/06/2010                                                | 2/06/2010                                                | 2/06/2010                                                | 31/05/2010                                               |
| Type of sample      |       | Soil                                                     | Soil                                                     | Soil                                                     | Soil                                                     | Soil                                                     |
| <br>Date analysed   | -     | 10/6/2010                                                | 10/6/2010                                                | 10/6/2010                                                | 10/6/2010                                                | 10/6/2010                                                |
| Sample Description  | -     | Approx 40g<br>Soil                                       | Approx 40g<br>Soil                                       | Approx 40g<br>Soil                                       | Approx 40g<br>Soil                                       | Approx 40g<br>Soil                                       |
| Asbestos ID in soil | -     | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg |
| Trace Analysis      | -     | Respirable<br>fibres not<br>detected                     | Respirable<br>fibres not<br>detected                     | Respirable<br>fibres not<br>detected                     | Respirable<br>fibres not<br>detected                     | Respirable<br>fibres not<br>detected                     |
| Ashastas ID, soila  |       |                                                          |                                                          |                                                          |                                                          |                                                          |
| Asbestos ID - Solis |       | 41028-0                                                  | 41028-10                                                 | 41028-13                                                 | 11028-15                                                 | 41028-16                                                 |
| Your Reference.     | UNITS | 41920-9<br>BH5/1 0                                       | 41920-10<br>BH6/0.1                                      | 41920-13<br>BH7/0 1                                      | 8H8/0 5                                                  | 41920-10<br>BU8/1 0                                      |
| Date Sampled        |       | 31/05/2010                                               | 25/05/2010                                               | 25/05/2010                                               | 27/05/2010                                               | 27/05/2010                                               |
|                     |       | Soil                                                     | Soil                                                     | Soil                                                     | Soil                                                     | Soil                                                     |
|                     |       |                                                          |                                                          |                                                          |                                                          | 001                                                      |
| Date analysed       | -     | 10/6/2010                                                | 10/6/2010                                                | 10/6/2010                                                | 10/6/2010                                                | 10/6/2010                                                |
| Sample Description  | -     | Approx 40g<br>Soil                                       | Approx 40g<br>Soil                                       | Approx 40g<br>Soil                                       | Approx 40g<br>Soil                                       | Approx 40g<br>Soil                                       |
| Asbestos ID in soil | -     | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg |
| Trace Analysis      | -     | Respirable<br>fibres not<br>detected                     | Respirable<br>fibres not<br>detected                     | Respirable<br>fibres not<br>detected                     | Respirable<br>fibres not<br>detected                     | Respirable<br>fibres not<br>detected                     |
| Ashestos ID - soils |       |                                                          |                                                          |                                                          | 7                                                        |                                                          |
| Our Reference:      |       | /1028-17                                                 | 11028-10                                                 | 11028-20                                                 |                                                          |                                                          |
| Your Reference      |       | BH9/0 5                                                  | BH10/0 5                                                 | BH10/1 0                                                 |                                                          |                                                          |
|                     |       | B110, 0.0                                                | 51110/0.0                                                | 51110/110                                                | 1                                                        |                                                          |

| Our Reference:      | UNITS | 41928-17                                                 | 41928-19                                                 | 41928-20                                                 |
|---------------------|-------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Your Reference      |       | BH9/0.5                                                  | BH10/0.5                                                 | BH10/1.0                                                 |
| Date Sampled        |       | 28/05/2010                                               | 2/06/2010                                                | 2/06/2010                                                |
| Type of sample      |       | Soil                                                     | Soil                                                     | Soil                                                     |
| Date analysed       | -     | 10/6/2010                                                | 10/6/2010                                                | 10/6/2010                                                |
| Sample Description  | -     | Approx 40g<br>Soil                                       | Approx 40g<br>Soil                                       | Approx 40g<br>Soil                                       |
| Asbestos ID in soil | -     | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg | No asbestos<br>found at<br>reporting limit<br>of 0.1g/kg |
| Trace Analysis      | -     | Respirable<br>fibres not<br>detected                     | Respirable<br>fibres not<br>detected                     | Respirable<br>fibres not<br>detected                     |



| UNITS | 41928-25                                                          |
|-------|-------------------------------------------------------------------|
|       | Rins 2                                                            |
|       | 2/06/2010                                                         |
|       | Water                                                             |
| -     | 9/6/2010                                                          |
| -     | 9/6/2010                                                          |
| µg/L  | <10                                                               |
| µg/L  | <1.0                                                              |
| µg/L  | <1.0                                                              |
| µg/L  | <1.0                                                              |
| µg/L  | <2.0                                                              |
| µg/L  | <1.0                                                              |
| %     | 103                                                               |
| %     | 90                                                                |
|       |                                                                   |
|       | <br><br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>% |

| sTPH in Water (C10-C36) |       |           |
|-------------------------|-------|-----------|
| Our Reference:          | UNITS | 41928-25  |
| Your Reference          |       | Rins 2    |
| Date Sampled            |       | 2/06/2010 |
| Type of sample          |       | Water     |
| Date extracted          | -     | 8/6/2010  |
| Date analysed           | -     | 8/6/2010  |
| TPH C10 - C14           | µg/L  | <50       |
| TPH C15 - C28           | µg/L  | <100      |
| TPH C29 - C36           | µg/L  | <100      |
| Surrogate o-Terphenyl   | %     | 107       |

| 5  |
|----|
|    |
| 0  |
|    |
| 10 |
| 10 |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |



| Method ID            | Methodology Summary                                                                                                                                                     |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GC.16                | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. |
| GC.3                 | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.                                                         |
| GC.12 subset         | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.                                                          |
| GC-5                 | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.                                             |
| GC.8                 | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.                                             |
| GC-6                 | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.                                                         |
| LAB.30               | Total Phenolics - determined colorimetrically following disitillation.                                                                                                  |
| Metals.20<br>ICP-AES | Determination of various metals by ICP-AES.                                                                                                                             |
| Metals.21<br>CV-AAS  | Determination of Mercury by Cold Vapour AAS.                                                                                                                            |
| LAB.8                | Moisture content determined by heating at 105 deg C for a minimum of 4 hours.                                                                                           |
| ASB.1                | Asbestos ID - Qualitative identification of asbestos type fibres in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques.                   |



| QUALITY CONTROL                   | UNITS | PQL | METHOD | Blank        | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
|-----------------------------------|-------|-----|--------|--------------|---------------|---------------------------|-----------|---------------------|
| vTPH & BTEX in Soil               |       |     |        |              |               | Base II Duplicate II %RPD |           |                     |
| Date extracted                    | -     |     |        | 8/6/201<br>0 | 41928-1       | 8/6/2010    8/6/2010      | LCS-1     | 8/6/2010            |
| Date analysed                     | -     |     |        | 9/6/201<br>0 | 41928-1       | 8/6/2010    8/6/2010      | LCS-1     | 9/6/2010            |
| vTPH C6 - C9                      | mg/kg | 25  | GC.16  | <25          | 41928-1       | <25    <25                | LCS-1     | 104%                |
| Benzene                           | mg/kg | 0.5 | GC.16  | <0.5         | 41928-1       | <0.5    <0.5              | LCS-1     | 107%                |
| Toluene                           | mg/kg | 0.5 | GC.16  | <0.5         | 41928-1       | <0.5    <0.5              | LCS-1     | 99%                 |
| Ethylbenzene                      | mg/kg | 1   | GC.16  | <1.0         | 41928-1       | <1.0    <1.0              | LCS-1     | 102%                |
| m+p-xylene                        | mg/kg | 2   | GC.16  | <2.0         | 41928-1       | <2.0    <2.0              | LCS-1     | 106%                |
| o-Xylene                          | mg/kg | 1   | GC.16  | <1.0         | 41928-1       | <1.0    <1.0              | LCS-1     | 110%                |
| Surrogate<br>aaa-Trifluorotoluene | %     |     | GC.16  | 119          | 41928-1       | 73    130    RPD: 56      | LCS-1     | 128%                |

| QUALITY CONTROL                 | UNITS | PQL | METHOD | Blank        | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
|---------------------------------|-------|-----|--------|--------------|---------------|---------------------------|-----------|---------------------|
| sTPH in Soil (C10-C36)          |       |     |        |              |               | Base II Duplicate II %RPD |           |                     |
| Date extracted                  | -     |     |        | 8/6/201<br>0 | 41928-1       | 8/6/2010    8/6/2010      | LCS-1     | 8/6/2010            |
| Date analysed                   | -     |     |        | 8/6/201<br>0 | 41928-1       | 8/6/2010    8/6/2010      | LCS-1     | 8/6/2010            |
| TPH C10 - C14                   | mg/kg | 50  | GC.3   | <50          | 41928-1       | <50    <50                | LCS-1     | 83%                 |
| TPH C15 - C28                   | mg/kg | 100 | GC.3   | <100         | 41928-1       | <100    <100              | LCS-1     | 102%                |
| TPH C29 - C36                   | mg/kg | 100 | GC.3   | <100         | 41928-1       | <100    <100              | LCS-1     | 100%                |
| <i>Surrogate</i><br>o-Terphenyl | %     |     | GC.3   | 78           | 41928-1       | 87    81    RPD: 7        | LCS-1     | 77%                 |

| QUALITY CONTROL | UNITS | PQL | METHOD          | Blank          | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
|-----------------|-------|-----|-----------------|----------------|---------------|---------------------------|-----------|---------------------|
| PAHs in Soil    |       |     |                 |                |               | Base II Duplicate II %RPD |           |                     |
| Date extracted  | -     |     |                 | 09/06/2<br>010 | 41928-1       | 09/06/2010    09/06/2010  | LCS-1     | 09/06/2010          |
| Date analysed   | -     |     |                 | 09/06/2<br>010 | 41928-1       | 09/06/2010    09/06/2010  | LCS-1     | 09/06/2010          |
| Naphthalene     | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 41928-1       | <0.1    <0.1              | LCS-1     | 89%                 |
| Acenaphthylene  | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Acenaphthene    | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Fluorene        | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 41928-1       | <0.1    <0.1              | LCS-1     | 94%                 |
| Phenanthrene    | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 41928-1       | 0.1    0.1    RPD: 0      | LCS-1     | 94%                 |
| Anthracene      | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Fluoranthene    | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 41928-1       | 0.3    0.3    RPD: 0      | LCS-1     | 91%                 |
| Pyrene          | mg/kg | 0.1 | GC.12<br>subset | <0.1           | 41928-1       | 0.3    0.4    RPD: 29     | LCS-1     | 96%                 |

Envirolab Reference: 41928 Revision No: R 00 ACCREDITED FOR TECHNICAL COMPETENCE Page 28 of 42

| Client Reference: 71682, Parramatta |       |      |                 |       |               |                           |           |                     |  |  |  |  |
|-------------------------------------|-------|------|-----------------|-------|---------------|---------------------------|-----------|---------------------|--|--|--|--|
| QUALITY CONTROL                     | UNITS | PQL  | METHOD          | Blank | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |  |  |  |  |
| PAHs in Soil                        |       |      |                 |       |               | Base II Duplicate II %RPD |           |                     |  |  |  |  |
| Benzo(a)anthracene                  | mg/kg | 0.1  | GC.12<br>subset | <0.1  | 41928-1       | 0.2    0.2    RPD: 0      | [NR]      | [NR]                |  |  |  |  |
| Chrysene                            | mg/kg | 0.1  | GC.12<br>subset | <0.1  | 41928-1       | 0.2    0.2    RPD: 0      | LCS-1     | 105%                |  |  |  |  |
| Benzo(b+k)fluoranthene              | mg/kg | 0.2  | GC.12<br>subset | <0.2  | 41928-1       | 0.3    0.4    RPD: 29     | [NR]      | [NR]                |  |  |  |  |
| Benzo(a)pyrene                      | mg/kg | 0.05 | GC.12<br>subset | <0.05 | 41928-1       | 0.2    0.2    RPD: 0      | LCS-1     | 95%                 |  |  |  |  |
| Indeno(1,2,3-c,d)pyrene             | mg/kg | 0.1  | GC.12<br>subset | <0.1  | 41928-1       | <0.1    0.1               | [NR]      | [NR]                |  |  |  |  |
| Dibenzo(a,h)anthracene              | mg/kg | 0.1  | GC.12<br>subset | <0.1  | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |  |  |  |  |
| Benzo(g,h,i)perylene                | mg/kg | 0.1  | GC.12<br>subset | <0.1  | 41928-1       | 0.1    0.1    RPD: 0      | [NR]      | [NR]                |  |  |  |  |
| Surrogate<br>p-Terphenyl-d14        | %     |      | GC.12<br>subset | 105   | 41928-1       | 108    111    RPD: 3      | LCS-1     | 105%                |  |  |  |  |

| QUALITY CONTROL                      | UNITS | PQL | METHOD | Blank          | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recoverv |
|--------------------------------------|-------|-----|--------|----------------|---------------|---------------------------|-----------|---------------------|
| Organochlorine<br>Pesticides in soil |       |     |        |                |               | Base II Duplicate II %RPD |           |                     |
| Date extracted                       | -     |     |        | 08/06/2<br>010 | 41928-1       | 08/06/2010    08/06/2010  | LCS-1     | 08/06/2010          |
| Date analysed                        | -     |     |        | 10/06/2<br>010 | 41928-1       | 10/06/2010    10/06/2010  | LCS-1     | 10/06/2010          |
| HCB                                  | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| alpha-BHC                            | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | LCS-1     | 104%                |
| gamma-BHC                            | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| beta-BHC                             | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | LCS-1     | 115%                |
| Heptachlor                           | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | LCS-1     | 100%                |
| delta-BHC                            | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Aldrin                               | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | LCS-1     | 99%                 |
| Heptachlor Epoxide                   | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | LCS-1     | 107%                |
| gamma-Chlordane                      | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| alpha-chlordane                      | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Endosulfan I                         | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| pp-DDE                               | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | LCS-1     | 116%                |
| Dieldrin                             | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | LCS-1     | 111%                |
| Endrin                               | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | LCS-1     | 106%                |
| pp-DDD                               | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | LCS-1     | 125%                |
| Endosulfan II                        | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| pp-DDT                               | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Endrin Aldehyde                      | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Endosulfan Sulphate                  | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | LCS-1     | 95%                 |
| Methoxychlor                         | mg/kg | 0.1 | GC-5   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Surrogate TCLMX                      | %     |     | GC-5   | 93             | 41928-1       | 95    97    RPD: 2        | LCS-1     | 93%                 |

Envirolab Reference: Revision No:



| QUALITY CONTROL                | UNITS | PQL | METHOD | Blank          | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
|--------------------------------|-------|-----|--------|----------------|---------------|---------------------------|-----------|---------------------|
| Organophosphorus<br>Pesticides |       |     |        |                |               | Base II Duplicate II %RPD |           |                     |
| Date extracted                 | -     |     |        | 08/06/2<br>010 | 41928-1       | 08/06/2010    08/06/2010  | LCS-1     | 08/06/2010          |
| Date analysed                  | -     |     |        | 10/06/2<br>010 | 41928-1       | 10/06/2010    10/06/2010  | LCS-1     | 10/06/2010          |
| Diazinon                       | mg/kg | 0.1 | GC.8   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Dimethoate                     | mg/kg | 0.1 | GC.8   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Chlorpyriphos-methyl           | mg/kg | 0.1 | GC.8   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Ronnel                         | mg/kg | 0.1 | GC.8   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Chlorpyriphos                  | mg/kg | 0.1 | GC.8   | <0.1           | 41928-1       | <0.1    <0.1              | LCS-1     | 105%                |
| Fenitrothion                   | mg/kg | 0.1 | GC.8   | <0.1           | 41928-1       | <0.1    <0.1              | LCS-1     | 102%                |
| Bromophos-ethyl                | mg/kg | 0.1 | GC.8   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Ethion                         | mg/kg | 0.1 | GC.8   | <0.1           | 41928-1       | <0.1    <0.1              | LCS-1     | 108%                |
| Surrogate TCLMX                | %     |     | GC.8   | 93             | 41928-1       | 95    97    RPD: 2        | LCS-1     | 96%                 |

| QUALITY CONTROL | UNITS | PQL | METHOD | Blank          | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
|-----------------|-------|-----|--------|----------------|---------------|---------------------------|-----------|---------------------|
| PCBs in Soil    |       |     |        |                |               | Base II Duplicate II %RPD |           |                     |
| Date extracted  | -     |     |        | 08/06/2<br>010 | 41928-1       | 08/06/2010    08/06/2010  | LCS-1     | 08/06/2010          |
| Date analysed   | -     |     |        | 10/06/2<br>010 | 41928-1       | 10/06/2010    10/06/2010  | LCS-1     | 10/06/2010          |
| Arochlor 1016   | mg/kg | 0.1 | GC-6   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Arochlor 1221*  | mg/kg | 0.1 | GC-6   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Arochlor 1232   | mg/kg | 0.1 | GC-6   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Arochlor 1242   | mg/kg | 0.1 | GC-6   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Arochlor 1248   | mg/kg | 0.1 | GC-6   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Arochlor 1254   | mg/kg | 0.1 | GC-6   | <0.1           | 41928-1       | <0.1    <0.1              | LCS-1     | 111%                |
| Arochlor 1260   | mg/kg | 0.1 | GC-6   | <0.1           | 41928-1       | <0.1    <0.1              | [NR]      | [NR]                |
| Surrogate TCLMX | %     |     | GC-6   | 93             | 41928-1       | 95    97    RPD: 2        | LCS-1     | 102%                |

| QUALITY CONTROL                | UNITS | PQL | METHOD | Blank          | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %    |
|--------------------------------|-------|-----|--------|----------------|---------------|---------------------------|-----------|------------|
|                                |       |     |        |                |               |                           |           | Recovery   |
| Total Phenolics in Soil        |       |     |        |                |               | Base II Duplicate II %RPD |           |            |
| Date extracted                 | -     |     |        | 08/06/2<br>010 | 41928-1       | 08/06/2010    08/06/2010  | LCS-1     | 08/06/2010 |
| Date analysed                  | -     |     |        | 08/06/2<br>010 | 41928-1       | 08/06/2010    08/06/2010  | LCS-1     | 08/06/2010 |
| Total Phenolics (as<br>Phenol) | mg/kg | 5   | LAB.30 | <5.0           | 41928-1       | <5.0    <5.0              | LCS-1     | 97%        |



| QUALITY CONTROL                 | UNITS | PQL | METHOD               | Blank          | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
|---------------------------------|-------|-----|----------------------|----------------|---------------|---------------------------|-----------|---------------------|
| Acid Extractable metals in soil |       |     |                      |                |               | Base II Duplicate II %RPD |           |                     |
| Date digested                   | -     |     |                      | 08/06/2<br>010 | 41928-1       | 08/06/2010    08/06/2010  | LCS-5     | 08/06/2010          |
| Date analysed                   | -     |     |                      | 08/06/2<br>010 | 41928-1       | 08/06/2010    08/06/2010  | LCS-5     | 08/06/2010          |
| Arsenic                         | mg/kg | 4   | Metals.20<br>ICP-AES | <4             | 41928-1       | 4    4    RPD: 0          | LCS-5     | 97%                 |
| Cadmium                         | mg/kg | 0.5 | Metals.20<br>ICP-AES | <0.5           | 41928-1       | <0.5    <0.5              | LCS-5     | 100%                |
| Chromium                        | mg/kg | 1   | Metals.20<br>ICP-AES | <1             | 41928-1       | 18    20    RPD: 11       | LCS-5     | 102%                |
| Copper                          | mg/kg | 1   | Metals.20<br>ICP-AES | <1             | 41928-1       | 140    160    RPD: 13     | LCS-5     | 102%                |
| Lead                            | mg/kg | 1   | Metals.20<br>ICP-AES | <1             | 41928-1       | 380    400    RPD: 5      | LCS-5     | 99%                 |
| Mercury                         | mg/kg | 0.1 | Metals.21<br>CV-AAS  | <0.1           | 41928-1       | 0.2    0.2    RPD: 0      | LCS-5     | 100%                |
| Nickel                          | mg/kg | 1   | Metals.20<br>ICP-AES | <1             | 41928-1       | 27    19    RPD: 35       | LCS-5     | 103%                |
| Zinc                            | mg/kg | 1   | Metals.20<br>ICP-AES | <1             | 41928-1       | 1700    2000    RPD: 16   | LCS-5     | 102%                |

| QUALITY CONTROL | UNITS | PQL | METHOD | Blank        |
|-----------------|-------|-----|--------|--------------|
| Moisture        |       |     |        |              |
| Date prepared   | -     |     |        | 8/6/201<br>0 |
| Date analysed   | -     |     |        | 8/6/201<br>0 |
| Moisture        | %     | 0.1 | LAB.8  | <0.10        |

| QUALITY CONTROL     | UNITS | PQL | METHOD | Blank |
|---------------------|-------|-----|--------|-------|
| Asbestos ID - soils |       |     |        |       |
| Date analysed       | -     |     |        | [NT]  |

| QUALITY CONTROL      | UNITS | PQL | METHOD | Blank             | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %  |
|----------------------|-------|-----|--------|-------------------|---------------|---------------------------|-----------|----------|
| vTPH & BTEX in Water |       |     |        |                   |               | Base II Duplicate II %RPD |           | Recovery |
| Date extracted       | -     |     |        | 9/6/201           | [NT]          | [NT]                      | LCS-W1    | 9/6/2010 |
| Date analysed        | -     |     |        | 0<br>9/6/201<br>0 | [NT]          | [NT]                      | LCS-W1    | 9/6/2010 |
| TPH C6 - C9          | µg/L  | 10  | GC.16  | <10               | [NT]          | [NT]                      | LCS-W1    | 112%     |
| Benzene              | µg/L  | 1   | GC.16  | <1.0              | [NT]          | [NT]                      | LCS-W1    | 121%     |
| Toluene              | µg/L  | 1   | GC.16  | <1.0              | [NT]          | [NT]                      | LCS-W1    | 110%     |
| Ethylbenzene         | µg/L  | 1   | GC.16  | <1.0              | [NT]          | [NT]                      | LCS-W1    | 109%     |
| m+p-xylene           | µg/L  | 2   | GC.16  | <2.0              | [NT]          | [NT]                      | LCS-W1    | 111%     |
| o-xylene             | µg/L  | 1   | GC.16  | <1.0              | [NT]          | [NT]                      | LCS-W1    | 111%     |



| Client Reference: 71682, Parramatta |       |     |        |              |               |                           |           |                     |  |
|-------------------------------------|-------|-----|--------|--------------|---------------|---------------------------|-----------|---------------------|--|
| QUALITY CONTROL                     | UNITS | PQL | METHOD | Blank        | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |  |
| vTPH & BTEX in Water                |       |     |        |              |               | Base II Duplicate II %RPD |           |                     |  |
| Surrogate<br>Dibromofluoromethane   | %     |     | GC.16  | 104          | [NT]          | [NT]                      | LCS-W1    | 125%                |  |
| Surrogate toluene-d8                | %     |     | GC.16  | 90           | [NT]          | [NT]                      | LCS-W1    | 91%                 |  |
| Surrogate 4-BFB                     | %     |     | GC.16  | 90           | [NT]          | [NT]                      | LCS-W1    | 99%                 |  |
|                                     |       |     |        |              |               |                           |           | 1                   |  |
| QUALITY CONTROL                     | UNITS | PQL | METHOD | Blank        | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |  |
| sTPH in Water (C10-C36)             |       |     |        |              |               | Base II Duplicate II %RPD |           |                     |  |
| Date extracted                      | -     |     |        | 8/6/201<br>0 | [NT]          | [NT]                      | LCS-W1    | 8/6/2010            |  |
| Date analysed                       | -     |     |        | 8/6/201<br>0 | [NT]          | [NT]                      | LCS-W1    | 8/6/2010            |  |
| TPH C10 - C14                       | µg/L  | 50  | GC.3   | <50          | [NT]          | [NT]                      | LCS-W1    | 90%                 |  |
| TPH C15 - C28                       | µg/L  | 100 | GC.3   | <100         | [NT]          | [NT]                      | LCS-W1    | 135%                |  |
| TPH C29 - C36                       | µg/L  | 100 | GC.3   | <100         | [NT]          | [NT]                      | LCS-W1    | 107%                |  |
| Surrogate<br>o-Terphenyl            | %     |     | GC.3   | 114          | [NT]          | [NT]                      | LCS-W1    | 118%                |  |

| QUALITY CONTROL        | UNITS | PQL | METHOD          | Blank          | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
|------------------------|-------|-----|-----------------|----------------|---------------|---------------------------|-----------|---------------------|
| PAHs in Water          |       |     |                 |                |               | Base II Duplicate II %RPD |           |                     |
| Date extracted         | -     |     |                 | 08/06/2<br>010 | [NT]          | [NT]                      | LCS-W1    | 08/06/2010          |
| Date analysed          | -     |     |                 | 08/06/2<br>010 | [NT]          | [NT]                      | LCS-W1    | 08/06/2010          |
| Naphthalene            | µg/L  | 1   | GC.12<br>subset | <1             | [NT]          | [NT]                      | LCS-W1    | 86%                 |
| Acenaphthylene         | µg/L  | 1   | GC.12<br>subset | <1             | [NT]          | [NT]                      | [NR]      | [NR]                |
| Acenaphthene           | µg/L  | 1   | GC.12<br>subset | <1             | [NT]          | [NT]                      | [NR]      | [NR]                |
| Fluorene               | µg/L  | 1   | GC.12<br>subset | <1             | [NT]          | [NT]                      | LCS-W1    | 95%                 |
| Phenanthrene           | µg/L  | 1   | GC.12<br>subset | <1             | [NT]          | [NT]                      | LCS-W1    | 94%                 |
| Anthracene             | µg/L  | 1   | GC.12<br>subset | <1             | [NT]          | [NT]                      | [NR]      | [NR]                |
| Fluoranthene           | µg/L  | 1   | GC.12<br>subset | <1             | [NT]          | [NT]                      | LCS-W1    | 91%                 |
| Pyrene                 | µg/L  | 1   | GC.12<br>subset | <1             | [NT]          | [NT]                      | LCS-W1    | 97%                 |
| Benzo(a)anthracene     | µg/L  | 1   | GC.12<br>subset | <1             | [NT]          | [NT]                      | [NR]      | [NR]                |
| Chrysene               | µg/L  | 1   | GC.12<br>subset | <1             | [NT]          | [NT]                      | LCS-W1    | 101%                |
| Benzo(b+k)fluoranthene | µg/L  | 2   | GC.12<br>subset | <2             | [NT]          | [NT]                      | [NR]      | [NR]                |
| Benzo(a)pyrene         | µg/L  | 1   | GC.12<br>subset | <1             | [NT]          | [NT]                      | LCS-W1    | 101%                |

Envirolab Reference: Revision No:



| Client Reference: 71682, Parramatta             |       |     |                 |         |                               |                           |      |               |          |
|-------------------------------------------------|-------|-----|-----------------|---------|-------------------------------|---------------------------|------|---------------|----------|
| QUALITY CONTROL                                 | UNITS | PQL | METHOD          | Blank   | Duplicate Sm#                 | Duplicate results         |      | Spike Sm#     | Spike %  |
| PAHs in Water                                   |       |     |                 |         |                               | Base II Duplicate II %RPD | )    |               | Recovery |
| Indeno(1,2,3-c,d)pyrene                         | µg/L  | 1   | GC.12<br>subset | <1      | [NT]                          | [NT]                      |      | [NR]          | [NR]     |
| Dibenzo(a,h)anthracene                          | µg/L  | 1   | GC.12<br>subset | <1      | [NT]                          | [NT]                      |      | [NR]          | [NR]     |
| Benzo(g,h,i)perylene                            | µg/L  | 1   | GC.12<br>subset | <1      | [NT]                          | [NT]                      |      | [NR]          | [NR]     |
| <i>Surrogate</i><br>p-Terphenyl-d <sub>14</sub> | %     |     | GC.12<br>subset | 103     | [NT]                          | [NT]                      |      | LCS-W1        | 109%     |
| QUALITY CONTROL                                 | UNITS | S   | Dup. Sm#        |         | Duplicate                     | Spike Sm#                 | Spil | ke % Recovery |          |
| vTPH & BTEX in Soil                             |       |     |                 | Base +  | Duplicate + %RPD              | )                         |      |               |          |
| Date extracted                                  | -     |     | 41928-11        | 8/6/2   | 010    8/6/2010               | LCS-2                     |      | 8/6/2010      |          |
| Date analysed                                   | -     |     | 41928-11        | 8/6/2   | 010    8/6/2010               | LCS-2                     |      | 9/6/2010      |          |
| vTPH C6 - C9                                    | mg/kg | 9   | 41928-11        |         | <25    <25                    | LCS-2                     |      | 90%           |          |
| Benzene                                         | mg/kg | g   | 41928-11        |         | <0.5    <0.5                  | LCS-2                     |      | 94%           |          |
| Toluene                                         | mg/kg | g   | 41928-11        |         | <0.5    <0.5                  | LCS-2                     |      | 86%           |          |
| Ethylbenzene                                    | mg/kg | 9   | 41928-11        |         | <1.0    <1.0                  | LCS-2                     |      | 87%           |          |
| m+p-xylene                                      | mg/kg | 9   | 41928-11        |         | <2.0    <2.0                  | LCS-2                     |      | 91%           |          |
| o-Xylene                                        | mg/kg | 9   | 41928-11        |         | <1.0    <1.0                  | LCS-2                     |      | 93%           |          |
| <i>Surrogate</i><br>aaa-Trifluorotoluene        | %     |     | 41928-11        | 120     | 127    RPD: 6                 | LCS-2                     |      | 111%          |          |
| QUALITY CONTROL<br>sTPH in Soil (C10-C36)       | UNITS | 6   | Dup. Sm#        | Base +  | Duplicate<br>Duplicate + %RPD | Spike Sm#                 | Spil | ke % Recovery |          |
| Date extracted                                  | -     |     | 41928-11        | 8/6/2   | 010    8/6/2010               | LCS-2                     |      | 8/6/2010      |          |
| Date analysed                                   | _     |     | 41928-11        | 8/6/2   | .010    8/6/2010              | LCS-2                     |      | 8/6/2010      |          |
| TPH C10 - C14                                   | mg/kg | g   | 41928-11        |         | <50    <50                    | LCS-2                     |      | 84%           |          |
| TPH C15 - C28                                   | mg/kg | g   | 41928-11        | <       | :100    <100                  | LCS-2                     |      | 100%          |          |
| TPH C29 - C36                                   | mg/kg | g   | 41928-11        | <       | :100    <100                  | LCS-2                     |      | 98%           |          |
| Surrogate o-Terphenyl                           | %     |     | 41928-11        | 76      | 76    RPD: 0                  | LCS-2                     |      | 75%           |          |
| QUALITY CONTROL<br>PAHs in Soil                 | UNITS | 3   | Dup. Sm#        | Base +  | Duplicate<br>Duplicate + %RPD | Spike Sm#                 | Spil | ke % Recovery |          |
| Date extracted                                  | -     |     | 41928-11        | 09/06/2 | 010    09/06/2010             | LCS-2                     |      | 09/06/2010    |          |
| Date analysed                                   | -     |     | 41928-11        | 09/06/2 | 2010    09/06/2010            | LCS-2                     |      | 09/06/2010    |          |
| Naphthalene                                     | mg/kg | g   | 41928-11        |         | <0.1    <0.1                  | LCS-2                     |      | 90%           |          |
| Acenaphthylene                                  | mg/kg | 9   | 41928-11        |         | <0.1    <0.1                  | [NR]                      |      | [NR]          |          |
| Acenaphthene                                    | mg/kg | 9   | 41928-11        |         | <0.1    <0.1                  | [NR]                      |      | [NR]          |          |
| Fluorene                                        | mg/kg | 9   | 41928-11        |         | <0.1    <0.1                  | LCS-2                     |      | 98%           |          |
| Phenanthrene                                    | mg/kg | 9   | 41928-11        |         | <0.1    <0.1                  | LCS-2                     |      | 93%           |          |
| Anthracene                                      | mg/kg | 9   | 41928-11        |         | <0.1    <0.1                  | [NR]                      |      | [NR]          |          |
| Fluoranthene                                    | mg/kg | 9   | 41928-11        | .       | <0.1    <0.1                  | LCS-2                     |      | 91%           |          |
| Pyrene                                          | mg/kg | 9   | 41928-11        |         | <0.1    <0.1                  | LCS-2                     |      | 95%           |          |
| Benzo(a)anthracene                              | mg/kg | 9   | 41928-11        |         | <0.1    <0.1                  | [NR]                      |      | [NR]          |          |
| Chrysene                                        | mg/kg | 9   | 41928-11        |         | <0.1    <0.1                  | LCS-2                     |      | 104%          |          |

Envirolab Reference: 41928 **Revision No:** 



|                                      |       | Client Reference | ce: 71682, Parramatta    | 3         |                  |
|--------------------------------------|-------|------------------|--------------------------|-----------|------------------|
| QUALITY CONTROL                      | UNITS | Dup. Sm#         | Duplicate                | Spike Sm# | Spike % Recovery |
| PAHs in Soil                         |       |                  | Base + Duplicate + %RPD  |           |                  |
| Benzo(b+k)fluoranthene               | mg/kg | 41928-11         | <0.2    <0.2             | [NR]      | [NR]             |
| Benzo(a)pyrene                       | mg/kg | 41928-11         | <0.05    <0.05           | LCS-2     | 109%             |
| Indeno(1,2,3-c,d)pyrene              | mg/kg | 41928-11         | <0.1    <0.1             | [NR]      | [NR]             |
| Dibenzo(a,h)anthracene               | mg/kg | 41928-11         | <0.1    <0.1             | [NR]      | [NR]             |
| Benzo(g,h,i)perylene                 | mg/kg | 41928-11         | <0.1    <0.1             | [NR]      | [NR]             |
| <i>Surrogate</i><br>p-Terphenyl-d14  | %     | 41928-11         | 109    107    RPD: 2     | LCS-2     | 97%              |
| QUALITY CONTROL                      | UNITS | Dup. Sm#         | Duplicate                | Spike Sm# | Spike % Recovery |
| Organochlorine Pesticides<br>in soil |       |                  | Base + Duplicate + %RPD  |           |                  |
| Date extracted                       | -     | 41928-11         | 08/06/2010    08/06/2010 | LCS-2     | 08/06/2010       |
| Date analysed                        | -     | 41928-11         | 10/06/2010    10/06/2010 | LCS-2     | 10/06/2010       |
| НСВ                                  | mg/kg | 41928-11         | <0.1    <0.1             | [NR]      | [NR]             |
| alpha-BHC                            | mg/kg | 41928-11         | <0.1    <0.1             | LCS-2     | 107%             |
| gamma-BHC                            | mg/kg | 41928-11         | <0.1    <0.1             | [NR]      | [NR]             |
| beta-BHC                             | mg/kg | 41928-11         | <0.1    <0.1             | LCS-2     | 110%             |
| Heptachlor                           | mg/kg | 41928-11         | <0.1    <0.1             | LCS-2     | 109%             |
| delta-BHC                            | mg/kg | 41928-11         | <0.1    <0.1             | [NR]      | [NR]             |
| Aldrin                               | mg/kg | 41928-11         | <0.1    <0.1             | LCS-2     | 104%             |
| Heptachlor Epoxide                   | mg/kg | 41928-11         | <0.1    <0.1             | LCS-2     | 112%             |
| gamma-Chlordane                      | mg/kg | 41928-11         | <0.1    <0.1             | [NR]      | [NR]             |
| alpha-chlordane                      | mg/kg | 41928-11         | <0.1    <0.1             | [NR]      | [NR]             |
| Endosulfan I                         | mg/kg | 41928-11         | <0.1    <0.1             | [NR]      | [NR]             |
| pp-DDE                               | mg/kg | 41928-11         | <0.1    <0.1             | LCS-2     | 112%             |
| Dieldrin                             | mg/kg | 41928-11         | <0.1    <0.1             | LCS-2     | 117%             |
| Endrin                               | mg/kg | 41928-11         | <0.1    <0.1             | LCS-2     | 112%             |
| pp-DDD                               | mg/kg | 41928-11         | <0.1    <0.1             | LCS-2     | 120%             |
| Endosulfan II                        | mg/kg | 41928-11         | <0.1    <0.1             | [NR]      | [NR]             |
| pp-DDT                               | mg/kg | 41928-11         | <0.1    <0.1             | [NR]      | [NR]             |
| Endrin Aldehyde                      | mg/kg | 41928-11         | <0.1    <0.1             | [NR]      | [NR]             |
| Endosulfan Sulphate                  | mg/kg | 41928-11         | <0.1    <0.1             | LCS-2     | 105%             |
| Methoxychlor                         | mg/kg | 41928-11         | <0.1    <0.1             | [NR]      | [NR]             |
| Surrogate TCLMX                      | %     | 41928-11         | 95    96    RPD: 1       | LCS-2     | 95%              |



| Client Reference: 71682, Parramatta                   |       |          |                                      |           |                  |  |  |  |  |
|-------------------------------------------------------|-------|----------|--------------------------------------|-----------|------------------|--|--|--|--|
| QUALITY CONTROL<br>Organophosphorus<br>Pesticides     | UNITS | Dup. Sm# | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |  |  |  |  |
| Date extracted                                        | -     | 41928-11 | 08/06/2010    08/06/2010             | LCS-2     | 08/06/2010       |  |  |  |  |
| Date analysed                                         | -     | 41928-11 | 10/06/2010    10/06/2010             | LCS-2     | 10/06/2010       |  |  |  |  |
| Diazinon                                              | mg/kg | 41928-11 | <0.1    <0.1                         | [NR]      | [NR]             |  |  |  |  |
| Dimethoate                                            | mg/kg | 41928-11 | <0.1    <0.1                         | [NR]      | [NR]             |  |  |  |  |
| Chlorpyriphos-methyl                                  | mg/kg | 41928-11 | <0.1    <0.1                         | [NR]      | [NR]             |  |  |  |  |
| Ronnel                                                | mg/kg | 41928-11 | <0.1    <0.1                         | [NR]      | [NR]             |  |  |  |  |
| Chlorpyriphos                                         | mg/kg | 41928-11 | <0.1    <0.1                         | LCS-2     | 110%             |  |  |  |  |
| Fenitrothion                                          | mg/kg | 41928-11 | <0.1    <0.1                         | LCS-2     | 100%             |  |  |  |  |
| Bromophos-ethyl                                       | mg/kg | 41928-11 | <0.1    <0.1                         | [NR]      | [NR]             |  |  |  |  |
| Ethion                                                | mg/kg | 41928-11 | <0.1    <0.1                         | LCS-2     | 105%             |  |  |  |  |
| Surrogate TCLMX                                       | %     | 41928-11 | 95    96    RPD: 1                   | LCS-2     | 100%             |  |  |  |  |
| QUALITY CONTROL<br>PCBs in Soil                       | UNITS | Dup. Sm# | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |  |  |  |  |
| Date extracted                                        | -     | 41928-21 | 08/06/2010    08/06/2010             | LCS-2     | 08/06/2010       |  |  |  |  |
| Date analysed                                         | -     | 41928-21 | 10/06/2010    10/06/2010             | LCS-2     | 10/06/2010       |  |  |  |  |
| Arochlor 1016                                         | mg/kg | 41928-21 | <0.1    <0.1                         | [NR]      | [NR]             |  |  |  |  |
| Arochlor 1221*                                        | mg/kg | 41928-21 | <0.1    <0.1                         | [NR]      | [NR]             |  |  |  |  |
| Arochlor 1232                                         | mg/kg | 41928-21 | <0.1    <0.1                         | [NR]      | [NR]             |  |  |  |  |
| Arochlor 1242                                         | mg/kg | 41928-21 | <0.1    <0.1                         | [NR]      | [NR]             |  |  |  |  |
| Arochlor 1248                                         | mg/kg | 41928-21 | <0.1    <0.1                         | [NR]      | [NR]             |  |  |  |  |
| Arochlor 1254                                         | mg/kg | 41928-21 | <0.1    <0.1                         | LCS-2     | 110%             |  |  |  |  |
| Arochlor 1260                                         | mg/kg | 41928-21 | <0.1    <0.1                         | [NR]      | [NR]             |  |  |  |  |
| Surrogate TCLMX                                       | %     | 41928-21 | 96    99    RPD: 3                   | LCS-2     | 97%              |  |  |  |  |
| QUALITY CONTROL<br>Total Phenolics in Soil            | UNITS | Dup. Sm# | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |  |  |  |  |
| Date extracted                                        | -     | 41928-11 | 08/06/2010    08/06/2010             | LCS-2     | 08/06/2010       |  |  |  |  |
| Date analysed                                         | -     | 41928-11 | 08/06/2010    08/06/2010             | LCS-2     | 08/06/2010       |  |  |  |  |
| Total Phenolics (as Phenol)                           | mg/kg | 41928-11 | <5.0    <5.0                         | LCS-2     | 92%              |  |  |  |  |
| QUALITY CONTROL<br>Acid Extractable metals in<br>soil | UNITS | Dup. Sm# | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |  |  |  |  |
| Date digested                                         | -     | 41928-11 | 08/06/2010    08/06/2010             | LCS-6     | 08/06/2010       |  |  |  |  |
| Date analysed                                         | -     | 41928-11 | 08/06/2010    08/06/2010             | LCS-6     | 08/06/2010       |  |  |  |  |
| Arsenic                                               | mg/kg | 41928-11 | <4    <4                             | LCS-6     | 98%              |  |  |  |  |
| Cadmium                                               | mg/kg | 41928-11 | <0.5    <0.5                         | LCS-6     | 100%             |  |  |  |  |
| Chromium                                              | mg/kg | 41928-11 | 2    2    RPD: 0                     | LCS-6     | 103%             |  |  |  |  |
| Copper                                                | mg/kg | 41928-11 | 3    3    RPD: 0                     | LCS-6     | 103%             |  |  |  |  |
| Lead                                                  | mg/kg | 41928-11 | 6    6    RPD: 0                     | LCS-6     | 99%              |  |  |  |  |
| Mercury                                               | mg/kg | 41928-11 | 0.1    <0.1                          | LCS-6     | 100%             |  |  |  |  |
| Nickel                                                | mg/kg | 41928-11 | 2    2    RPD: 0                     | LCS-6     | 104%             |  |  |  |  |

Envirolab Reference: 41928 **Revision No:** 



|                                                       |       | <b>Client Reference</b> | ce: 71682, Parramatta                | a         |                  |
|-------------------------------------------------------|-------|-------------------------|--------------------------------------|-----------|------------------|
| QUALITY CONTROL<br>Acid Extractable metals in<br>soil | UNITS | Dup. Sm#                | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |
| Zinc                                                  | mg/kg | 41928-11                | 6    6    RPD: 0                     | LCS-6     | 103%             |
| QUALITY CONTROL<br>vTPH & BTEX in Soil                | UNITS | Dup. Sm#                | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |
| Date extracted                                        | -     | 41928-21                | 8/6/2010    8/6/2010                 | 41928-2   | 8/6/2010         |
| Date analysed                                         | -     | 41928-21                | 8/6/2010    8/6/2010                 | 41928-2   | 9/6/2010         |
| vTPH C6 - C9                                          | mg/kg | 41928-21                | <25    <25                           | 41928-2   | 85%              |
| Benzene                                               | mg/kg | 41928-21                | <0.5    <0.5                         | 41928-2   | 61%              |
| Toluene                                               | mg/kg | 41928-21                | <0.5    <0.5                         | 41928-2   | 89%              |
| Ethylbenzene                                          | mg/kg | 41928-21                | <1.0    <1.0                         | 41928-2   | 89%              |
| m+p-xylene                                            | mg/kg | 41928-21                | <2.0    <2.0                         | 41928-2   | 92%              |
| o-Xylene                                              | mg/kg | 41928-21                | <1.0    <1.0                         | 41928-2   | 95%              |
| Surrogate<br>aaa-Trifluorotoluene                     | %     | 41928-21                | 119    120    RPD: 1                 | 41928-2   | 124%             |
| QUALITY CONTROL                                       | UNITS | Dup. Sm#                | Duplicate                            | Spike Sm# | Spike % Recovery |
| sTPH in Soil (C10-C36)                                |       |                         | Base + Duplicate + %RPD              |           |                  |
| Date extracted                                        | -     | 41928-21                | 8/6/2010    8/6/2010                 | 41928-2   | 8/6/2010         |
| Date analysed                                         | -     | 41928-21                | 8/6/2010    8/6/2010                 | 41928-2   | 8/6/2010         |
| TPH C10 - C14                                         | mg/kg | 41928-21                | <50    <50                           | 41928-2   | 91%              |
| TPH C15 - C28                                         | mg/kg | 41928-21                | <100    <100                         | 41928-2   | 106%             |
| TPH C29 - C36                                         | mg/kg | 41928-21                | <100    <100                         | 41928-2   | 107%             |
| Surrogate o-Terphenyl                                 | %     | 41928-21                | 76    75    RPD: 1                   | 41928-2   | 83%              |
| QUALITY CONTROL<br>PAHs in Soil                       | UNITS | Dup. Sm#                | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |
| Date extracted                                        | -     | 41928-21                | 09/06/2010    09/06/2010             | 41928-2   | 09/06/2010       |
| Date analysed                                         | -     | 41928-21                | 09/06/2010    09/06/2010             | 41928-2   | 09/06/2010       |
| Naphthalene                                           | mg/kg | 41928-21                | <0.1    <0.1                         | 41928-2   | 83%              |
| Acenaphthylene                                        | mg/kg | 41928-21                | <0.1    <0.1                         | [NR]      | [NR]             |
| Acenaphthene                                          | mg/kg | 41928-21                | <0.1    <0.1                         | [NR]      | [NR]             |
| Fluorene                                              | mg/kg | 41928-21                | <0.1    <0.1                         | 41928-2   | 99%              |
| Phenanthrene                                          | mg/kg | 41928-21                | 0.1    <0.1                          | 41928-2   | 97%              |
| Anthracene                                            | mg/kg | 41928-21                | <0.1    <0.1                         | [NR]      | [NR]             |
| Fluoranthene                                          | mg/kg | 41928-21                | 0.2    <0.1                          | 41928-2   | 95%              |
| Pyrene                                                | mg/kg | 41928-21                | 0.2    <0.1                          | 41928-2   | 100%             |
| Benzo(a)anthracene                                    | mg/kg | 41928-21                | <0.1    <0.1                         | [NR]      | [NR]             |
| Chrysene                                              | mg/kg | 41928-21                | 0.1    <0.1                          | 41928-2   | 107%             |
| Benzo(b+k)fluoranthene                                | mg/kg | 41928-21                | <0.2    <0.2                         | [NR]      | [NR]             |
| Benzo(a)pyrene                                        | mg/kg | 41928-21                | 0.06    <0.05                        | 41928-2   | 104%             |
| Indeno(1,2,3-c,d)pyrene                               | mg/kg | 41928-21                | <0.1    <0.1                         | [NR]      | [NR]             |
| Dibenzo(a,h)anthracene                                | mg/kg | 41928-21                | <0.1    <0.1                         | [NR]      | [NR]             |
| Benzo(g,h,i)perylene                                  | mg/kg | 41928-21                | <0.1    <0.1                         | [NR]      | [NR]             |

Envirolab Reference: 41928 Revision No: R 00

| Client Reference: 71682, Parramatta | eference: 71682, | Parramatta |
|-------------------------------------|------------------|------------|
|-------------------------------------|------------------|------------|

|                                          |       |          | i i i i i i i i i i i i i i i i i i i | a         |                  |
|------------------------------------------|-------|----------|---------------------------------------|-----------|------------------|
| QUALITY CONTROL<br>PAHs in Soil          | UNITS | Dup. Sm# | Duplicate<br>Base + Duplicate + %RPD  | Spike Sm# | Spike % Recovery |
|                                          |       |          |                                       |           |                  |
| Surrogate<br>p-Terphenyl-d <sub>14</sub> | %     | 41928-21 | 113    104    RPD: 8                  | 41928-2   | 106%             |
| QUALITY CONTROL                          | UNITS | Dup. Sm# | Duplicate                             | Spike Sm# | Spike % Recovery |
| Organochlorine Pesticides<br>in soil     |       |          | Base + Duplicate + %RPD               |           |                  |
| Date extracted                           | -     | 41928-21 | 08/06/2010    08/06/2010              | 41928-2   | 08/06/2010       |
| Date analysed                            | -     | 41928-21 | 10/06/2010    10/06/2010              | 41928-2   | 10/06/2010       |
| НСВ                                      | mg/kg | 41928-21 | <0.1    <0.1                          | [NR]      | [NR]             |
| alpha-BHC                                | mg/kg | 41928-21 | <0.1    <0.1                          | 41928-2   | 108%             |
| gamma-BHC                                | mg/kg | 41928-21 | <0.1    <0.1                          | [NR]      | [NR]             |
| beta-BHC                                 | mg/kg | 41928-21 | <0.1    <0.1                          | 41928-2   | 117%             |
| Heptachlor                               | mg/kg | 41928-21 | <0.1    <0.1                          | 41928-2   | 97%              |
| delta-BHC                                | mg/kg | 41928-21 | <0.1    <0.1                          | [NR]      | [NR]             |
| Aldrin                                   | mg/kg | 41928-21 | <0.1    <0.1                          | 41928-2   | 102%             |
| Heptachlor Epoxide                       | mg/kg | 41928-21 | <0.1    <0.1                          | 41928-2   | 111%             |
| gamma-Chlordane                          | mg/kg | 41928-21 | <0.1    <0.1                          | [NR]      | [NR]             |
| alpha-chlordane                          | mg/kg | 41928-21 | <0.1    <0.1                          | [NR]      | [NR]             |
| Endosulfan I                             | mg/kg | 41928-21 | <0.1    <0.1                          | [NR]      | [NR]             |
| pp-DDE                                   | mg/kg | 41928-21 | <0.1    <0.1                          | 41928-2   | 120%             |
| Dieldrin                                 | mg/kg | 41928-21 | <0.1    <0.1                          | 41928-2   | 115%             |
| Endrin                                   | mg/kg | 41928-21 | <0.1    <0.1                          | 41928-2   | 108%             |
| pp-DDD                                   | mg/kg | 41928-21 | <0.1    <0.1                          | 41928-2   | 131%             |
| Endosulfan II                            | mg/kg | 41928-21 | <0.1    <0.1                          | [NR]      | [NR]             |
| pp-DDT                                   | mg/kg | 41928-21 | <0.1    <0.1                          | [NR]      | [NR]             |
| Endrin Aldehyde                          | mg/kg | 41928-21 | <0.1    <0.1                          | [NR]      | [NR]             |
| Endosulfan Sulphate                      | mg/kg | 41928-21 | <0.1    <0.1                          | 41928-2   | 100%             |
| Methoxychlor                             | mg/kg | 41928-21 | <0.1    <0.1                          | [NR]      | [NR]             |
| Surrogate TCLMX                          | %     | 41928-21 | 96    99    RPD: 3                    | 41928-2   | 96%              |



| QUALITY CONTROL<br>Organophosphorus<br>Pesticides         UNITS         Dup. Sm#         Duplicate<br>Base + Duplicate + %RPD         Spike Sm#         Spike % Recover<br>Spike % Recover<br>08/06/2010           Date extracted         -         41928-21         08/06/2010         41928-2         08/06/2010           Date extracted         -         41928-21         10/06/2010         1928-2         08/06/2010           Date analysed         -         41928-21         <0.1    <0.1         [NR]         [NR]           Dimethoate         mg/kg         41928-21         <0.1    <0.1         [NR]         [NR]           Chlorpyriphos-methyl         mg/kg         41928-21         <0.1    <0.1         [NR]         [NR]           Chlorpyriphos         mg/kg         41928-21         <0.1    <0.1         [NR]         [NR]           Chlorpyriphos         mg/kg         41928-21         <0.1    <0.1         [NR]         [NR]           Chlorpyriphos         mg/kg         41928-21         <0.1    <0.1         41928-2         102%           Bromophos-ethyl         mg/kg         41928-21         <0.1    <0.1         [NR]         [NR]           Ethion         mg/kg         41928-21         <0.1    <0.1         41928-2         109%           Surrogate TCLMX <th></th> <th></th> <th>Client Referen</th> <th>ce: 71682, Parramatta</th> <th>a</th> <th></th>                                                                                                                                                                                                                                |                                                   |       | Client Referen | ce: 71682, Parramatta                | a               |                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------|----------------|--------------------------------------|-----------------|------------------|
| Date extracted         -         41928-21         08/06/2010    08/06/2010         41928-2         08/06/2010           Date analysed         -         41928-21         10/06/2010         41928-2         10/06/2010           Diazinon         mg/kg         41928-21         <0.1    <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QUALITY CONTROL<br>Organophosphorus<br>Pesticides | UNITS | Dup. Sm#       | Duplicate<br>Base + Duplicate + %RPD | Spike Sm#       | Spike % Recovery |
| Date enalysed         -         41928-21         00/06/2010    10/06/2010         41928-2         10/06/2010           Diate analysed         -         41928-21         10/06/2010    10/06/2010         41928-2         10/06/2010           Diazinon         mg/kg         41928-21         <0.1    <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date extracted                                    | _     | 41928-21       | 08/06/2010    08/06/2010             | 41928-2         | 08/06/2010       |
| Date analysed         Implementation         Missber (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 1)         Instance (1, 2, 2, 2, 1)         Instance (1, 2, 2, 2, 2)         Insta | Date analysed                                     |       | 41920-21       | 10/06/2010    10/06/2010             | 41920-2         | 10/06/2010       |
| Diazlion         Ing kg         41928-21         C.I.    C.I.         [NR]         [NR]           Dimethoate         mg/kg         41928-21         <0.1    <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Diazinon                                          | ma/ka | 41920-21       | -0.1    -0.1                         | 1920-2<br>[NID] | INID1            |
| Differindate         Ing/kg         41926-21         C.O. III (20.1)         [INR]         [INR]           Chlorpyriphos-methyl         mg/kg         41928-21         <0.1    <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Diazinon                                          | mg/kg | 41920-21       | <0.1    <0.1                         |                 |                  |
| Chidipyipinds-methyi         mg/kg         41926-21         co.1    <0.1         [INR]         [INR]           Ronnel         mg/kg         41928-21         <0.1    <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   | mg/kg | 41920-21       | <0.1    <0.1                         |                 |                  |
| Rotifier         Inig/kg         41926-21         <0.1    <0.1         [NK]         [NK]           Chlorpyriphos         mg/kg         41928-21         <0.1    <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chiorpynphos-methyl                               | mg/kg | 41920-21       | <0.1    <0.1                         |                 |                  |
| Chilopynphos         Ing/kg         41928-21         Co.1    <0.1         41928-2         107%           Fenitrothion         mg/kg         41928-21         <0.1    <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chlerenwinhee                                     | mg/kg | 41928-21       | <0.1    <0.1                         |                 | [NR]             |
| Fenitrotnion         mg/kg         41928-21         <0.1    <0.1         41928-2         102%           Bromophos-ethyl         mg/kg         41928-21         <0.1    <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chiorpynphos                                      | mg/kg | 41928-21       | <0.1    <0.1                         | 41928-2         | 107%             |
| Bromophos-ethyl         mg/kg         41928-21         <0.1    <0.1         [NR]         [NR]           Ethion         mg/kg         41928-21         <0.1    <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fenitrothion                                      | mg/kg | 41928-21       | <0.1    <0.1                         | 41928-2         | 102%             |
| Ethion         mg/kg         41928-21         <0.1    <0.1         41928-2         109%           Surrogate TCLMX         %         41928-21         96    99    RPD: 3         41928-2         99%           QUALITY CONTROL<br>PCBs in Soil         UNITS         Dup. Sm#         Duplicate<br>Base + Duplicate + %RPD         Spike Sm#         Spike % Recover           Date extracted         -         [NT]         [NT]         41928-2         08/06/2010           Date analysed         -         [NT]         [NT]         41928-2         10/06/2010           Arochlor 1016         mg/kg         [NT]         [NT]         [NR]         [NR]           Arochlor 1221*         mg/kg         [NT]         [NT]         [NR]         [NR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bromophos-ethyl                                   | mg/kg | 41928-21       | <0.1    <0.1                         | [NR]            | [NR]             |
| Surrogate TCLMX         %         41928-21         96    99    RPD: 3         41928-2         99%           QUALITY CONTROL<br>PCBs in Soil         UNITS         Dup. Sm#         Duplicate<br>Base + Duplicate + %RPD         Spike Sm#         Spike % Recover           Date extracted         -         [NT]         [NT]         41928-2         08/06/2010           Date analysed         -         [NT]         [NT]         41928-2         10/06/2010           Arochlor 1016         mg/kg         [NT]         [NT]         [NR]         [NR]           Arochlor 1221*         mg/kg         [NT]         [NT]         [NR]         [NR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ethion                                            | mg/kg | 41928-21       | <0.1    <0.1                         | 41928-2         | 109%             |
| QUALITY CONTROL<br>PCBs in SoilUNITSDup. Sm#Duplicate<br>Base + Duplicate + %RPDSpike Sm#Spike % Recover<br>Spike % Recover<br>000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Surrogate TCLMX                                   | %     | 41928-21       | 96    99    RPD: 3                   | 41928-2         | 99%              |
| Date extracted         -         [NT]         [NT]         41928-2         08/06/2010           Date analysed         -         [NT]         [NT]         41928-2         10/06/2010           Arochlor 1016         mg/kg         [NT]         [NT]         [NR]         [NR]           Arochlor 1221*         mg/kg         [NT]         [NT]         [NR]         [NR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QUALITY CONTROL<br>PCBs in Soil                   | UNITS | Dup. Sm#       | Duplicate<br>Base + Duplicate + %RPD | Spike Sm#       | Spike % Recovery |
| Date analysed         -         [NT]         [NT]         41928-2         10/06/2010           Arochlor 1016         mg/kg         [NT]         [NT]         [NR]         [NR]           Arochlor 1221*         mg/kg         [NT]         [NT]         [NR]         [NR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date extracted                                    | -     | [NT]           | [NT]                                 | 41928-2         | 08/06/2010       |
| Arochlor 1016         mg/kg         [NT]         [NT]         [NR]         [NR]           Arochlor 1221*         mg/kg         [NT]         [NT]         [NR]         [NR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date analysed                                     | -     | [NT]           | [NT]                                 | 41928-2         | 10/06/2010       |
| Arochlor 1221* mg/kg [NT] [NT] [NR] [NR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Arochlor 1016                                     | mg/kg | [NT]           | [NT]                                 | [NR]            | [NR]             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Arochlor 1221*                                    | mg/kg | [NT]           | [NT]                                 | [NR]            | [NR]             |
| Arochlor 1232 mg/kg [NT] [NT] [NR] [NR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Arochlor 1232                                     | mg/kg | [NT]           | [NT]                                 | [NR]            | [NR]             |
| Arochlor 1242         mg/kg         [NT]         [NT]         [NR]         [NR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Arochlor 1242                                     | mg/kg | [NT]           | [NT]                                 | [NR]            | [NR]             |
| Arochlor 1248 ma/ka [NT] [NT] [NT] [NR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Arochlor 1248                                     | ma/ka |                | INTI                                 | [NR]            | [NR]             |
| Arochlor 1254         ma/kg         [NT]         [NT]         41928-2         112%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Arochlor 1254                                     | ma/ka |                | INTI                                 | 41928-2         | 112%             |
| Arochlor 1260 ma/ka [NT] [NT] [NT] [NR]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Arochlor 1260                                     | ma/ka |                |                                      | [NR]            | [NR]             |
| Surrogate TCLMX         %         [NT]         [NT]         41928-2         99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Surrogate TCLMX                                   | %     |                | [NT]                                 | 41928-2         | 99%              |
| QUALITY CONTROL UNITS Dup. Sm# Duplicate Spike Sm# Spike % Recover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | QUALITY CONTROL                                   | UNITS | Dup. Sm#       | Duplicate                            | Spike Sm#       | Spike % Recovery |
| Total Phenolics in Soil Base + Duplicate + %RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total Phenolics in Soil                           |       |                | Base + Duplicate + %RPD              |                 |                  |
| Date extracted         -         41928-21         08/06/2010    08/06/2010         41928-2         08/06/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date extracted                                    | -     | 41928-21       | 08/06/2010    08/06/2010             | 41928-2         | 08/06/2010       |
| Date analysed         -         41928-21         08/06/2010    08/06/2010         41928-2         08/06/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date analysed                                     | -     | 41928-21       | 08/06/2010    08/06/2010             | 41928-2         | 08/06/2010       |
| Total Phenolics (as Phenol)         mg/kg         41928-21         <5.0    <5.0         41928-2         76%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Phenolics (as Phenol)                       | mg/kg | 41928-21       | <5.0    <5.0                         | 41928-2         | 76%              |
| QUALITY CONTROL         UNITS         Dup. Sm#         Duplicate         Spike Sm#         Spike % Recover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QUALITY CONTROL                                   | UNITS | Dup. Sm#       | Duplicate                            | Spike Sm#       | Spike % Recovery |
| Acid Extractable metals in Base + Duplicate + %RPD soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Acid Extractable metals in soil                   |       |                | Base + Duplicate + %RPD              |                 |                  |
| Date digested         -         41928-21         08/06/2010    08/06/2010         41928-2         08/06/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date digested                                     | -     | 41928-21       | 08/06/2010    08/06/2010             | 41928-2         | 08/06/2010       |
| Date analysed         -         41928-21         08/06/2010    08/06/2010         41928-2         08/06/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date analysed                                     | -     | 41928-21       | 08/06/2010    08/06/2010             | 41928-2         | 08/06/2010       |
| Arsenic         mg/kg         41928-21         6    5    RPD: 18         41928-2         100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arsenic                                           | mg/kg | 41928-21       | 6    5    RPD: 18                    | 41928-2         | 100%             |
| Cadmium mg/kg 41928-21 <0.5 41928-2 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cadmium                                           | mg/kg | 41928-21       | <0.5    <0.5                         | 41928-2         | 99%              |
| Chromium         mg/kg         41928-21         4    3    RPD: 29         41928-2         104%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chromium                                          | mg/kg | 41928-21       | 4    3    RPD: 29                    | 41928-2         | 104%             |
| Copper         mg/kg         41928-21         10    7    RPD: 35         41928-2         105%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Copper                                            | mg/kg | 41928-21       | 10    7    RPD: 35                   | 41928-2         | 105%             |
| Lead mg/kg 41928-21 67    61    RPD: 9 41928-2 102%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lead                                              | mg/kg | 41928-21       | 67    61    RPD: 9                   | 41928-2         | 102%             |
| Mercury         mg/kg         41928-21         1.0    0.1    RPD: 164         41928-2         100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mercury                                           | mg/kg | 41928-21       | 1.0    0.1    RPD: 164               | 41928-2         | 100%             |
| Nickel         mg/kg         41928-21         4    3    RPD: 29         41928-2         100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nickel                                            | ma/ka | 41928-21       | 4    3    RPD: 29                    | 41928-2         | 100%             |

Envirolab Reference:41928Revision No:R 00

|                                               |       | <b>Client Referen</b> | ce: 71682, Parramatta                | a         |                  |
|-----------------------------------------------|-------|-----------------------|--------------------------------------|-----------|------------------|
| QUALITY CONTROL<br>Acid Extractable metals in | UNITS | Dup. Sm#              | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |
| soil                                          |       |                       |                                      |           |                  |
| Zinc                                          | mg/kg | 41928-21              | 150    140    RPD: 7                 | 41928-2   | 100%             |
| QUALITY CONTROL                               | UNITS | Dup. Sm#              | Duplicate                            | Spike Sm# | Spike % Recovery |
| vTPH & BTEX in Soil                           |       |                       | Base + Duplicate + %RPD              |           |                  |
| Date extracted                                | -     | [NT]                  | [NT]                                 | 41928-22  | 8/6/2010         |
| Date analysed                                 | -     | [NT]                  | [NT]                                 | 41928-22  | 9/6/2010         |
| vTPH C6 - C9                                  | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 98%              |
| Benzene                                       | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 100%             |
| Toluene                                       | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 94%              |
| Ethylbenzene                                  | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 96%              |
| m+p-xylene                                    | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 100%             |
| o-Xylene                                      | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 103%             |
| <i>Surrogate</i><br>aaa-Trifluorotoluene      | %     | [NT]                  | [NT]                                 | 41928-22  | 120%             |
| QUALITY CONTROL<br>sTPH in Soil (C10-C36)     | UNITS | Dup. Sm#              | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |
| Date extracted                                | -     | [NT]                  | INTI                                 | 41928-22  | 8/6/2010         |
| Date analysed                                 | _     | INTI                  |                                      | 41928-22  | 8/6/2010         |
| TPH C10 - C14                                 | ma/ka | INTI                  |                                      | 41928-22  | 83%              |
| TPH C15 - C28                                 | ma/ka | INTI                  |                                      | 41928-22  | 100%             |
| TPH C <sub>29</sub> - C <sub>36</sub>         | ma/ka | INTI                  |                                      | 41928-22  | 101%             |
| Surrogate o-Terphenvl                         | %     | INTI                  |                                      | 41928-22  | 75%              |
| QUALITY CONTROL                               | UNITS | Dup. Sm#              | Duplicate                            | Spike Sm# | Spike % Recovery |
| PAHs in Soil                                  |       |                       | Base + Duplicate + %RPD              |           |                  |
| Date extracted                                | -     | [NT]                  | [NT]                                 | 41928-22  | 09/06/2010       |
| Date analysed                                 | -     | [NT]                  | [NT]                                 | 41928-22  | 09/06/2010       |
| Naphthalene                                   | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 90%              |
| Acenaphthylene                                | mg/kg | [NT]                  | [NT]                                 | [NR]      | [NR]             |
| Acenaphthene                                  | mg/kg | [NT]                  | [NT]                                 | [NR]      | [NR]             |
| Fluorene                                      | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 98%              |
| Phenanthrene                                  | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 98%              |
| Anthracene                                    | mg/kg | [NT]                  | [NT]                                 | [NR]      | [NR]             |
| Fluoranthene                                  | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 96%              |
| Pyrene                                        | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 101%             |
| Benzo(a)anthracene                            | mg/kg | [NT]                  | [NT]                                 | [NR]      | [NR]             |
| Chrysene                                      | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 110%             |
| Benzo(b+k)fluoranthene                        | mg/kg | [NT]                  | [NT]                                 | [NR]      | [NR]             |
| Benzo(a)pyrene                                | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 93%              |
| Indeno(1,2,3-c,d)pyrene                       | mg/kg | [NT]                  | [NT]                                 | [NR]      | [NR]             |
| Dibenzo(a,h)anthracene                        | mg/kg | [NT]                  | [NT]                                 | [NR]      | [NR]             |
| Benzo(g,h,i)perylene                          | mg/kg | [NT]                  | [NT]                                 | [NR]      | [NR]             |

Envirolab Reference: 41928 Revision No: R 00

| <b>Client Reference:</b> | 71682, Parramatta |
|--------------------------|-------------------|
|--------------------------|-------------------|

| QUALITY CONTROL<br>PAHs in Soil                         | UNITS | Dup. Sm# | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |
|---------------------------------------------------------|-------|----------|--------------------------------------|-----------|------------------|
| Surrogate<br>p-Terphenyl-d14                            | %     | [NT]     | [NT]                                 | 41928-22  | 107%             |
| QUALITY CONTROL<br>Organochlorine Pesticides<br>in soil | UNITS | Dup. Sm# | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |
| Date extracted                                          | -     | [NT]     | [NT]                                 | 41928-22  | 08/06/2010       |
| Date analysed                                           | -     | [NT]     | [NT]                                 | 41928-22  | 10/06/2010       |
| НСВ                                                     | mg/kg | [NT]     | [NT]                                 | [NR]      | [NR]             |
| alpha-BHC                                               | mg/kg | [NT]     | [NT]                                 | 41928-22  | 113%             |
| gamma-BHC                                               | mg/kg | [NT]     | [NT]                                 | [NR]      | [NR]             |
| beta-BHC                                                | mg/kg | [NT]     | [NT]                                 | 41928-22  | 115%             |
| Heptachlor                                              | mg/kg | [NT]     | [NT]                                 | 41928-22  | 116%             |
| delta-BHC                                               | mg/kg | [NT]     | [NT]                                 | [NR]      | [NR]             |
| Aldrin                                                  | mg/kg | [NT]     | [NT]                                 | 41928-22  | 109%             |
| Heptachlor Epoxide                                      | mg/kg | [NT]     | [NT]                                 | 41928-22  | 118%             |
| gamma-Chlordane                                         | mg/kg | [NT]     | [NT]                                 | [NR]      | [NR]             |
| alpha-chlordane                                         | mg/kg | [NT]     | [NT]                                 | [NR]      | [NR]             |
| Endosulfan I                                            | mg/kg | [NT]     | [NT]                                 | [NR]      | [NR]             |
| pp-DDE                                                  | mg/kg | [NT]     | [NT]                                 | 41928-22  | 117%             |
| Dieldrin                                                | mg/kg | [NT]     | [NT]                                 | 41928-22  | 122%             |
| Endrin                                                  | mg/kg | [NT]     | [NT]                                 | 41928-22  | 118%             |
| pp-DDD                                                  | mg/kg | [NT]     | [NT]                                 | 41928-22  | 126%             |
| Endosulfan II                                           | mg/kg | [NT]     | [NT]                                 | [NR]      | [NR]             |
| pp-DDT                                                  | mg/kg | [NT]     | [NT]                                 | [NR]      | [NR]             |
| Endrin Aldehyde                                         | mg/kg | [NT]     | [NT]                                 | [NR]      | [NR]             |
| Endosulfan Sulphate                                     | mg/kg | [NT]     | [NT]                                 | 41928-22  | 115%             |
| Methoxychlor                                            | mg/kg | [NT]     | [NT]                                 | [NR]      | [NR]             |
| Surrogate TCLMX                                         | %     | [NT]     | [NT]                                 | 41928-22  | 99%              |

|                                                   |       | <b>Client Referen</b> | ce: 71682, Parramatta                | 1         |                  |
|---------------------------------------------------|-------|-----------------------|--------------------------------------|-----------|------------------|
| QUALITY CONTROL<br>Organophosphorus<br>Pesticides | UNITS | Dup. Sm#              | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |
| Date extracted                                    | _     | [NT]                  | INTI                                 | 41928-22  | 08/06/2010       |
| Date analysed                                     | _     |                       |                                      | 41928-22  | 10/06/2010       |
| Diazinon                                          | ma/ka |                       |                                      | IND1      | IND1             |
| Diazinon                                          | mg/kg |                       |                                      |           |                  |
| Ohlemeniakaa matkud                               | mg/kg |                       |                                      |           |                  |
| Cniorpyripnos-metnyi                              | mg/kg |                       |                                      | [NR]      |                  |
| Ronnel                                            | mg/kg |                       |                                      |           |                  |
| Chlorpyriphos                                     | mg/kg | [N1]                  | [N1]                                 | 41928-22  | 114%             |
| Fenitrothion                                      | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 105%             |
| Bromophos-ethyl                                   | mg/kg | [NT]                  | [NT]                                 | [NR]      | [NR]             |
| Ethion                                            | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 111%             |
| Surrogate TCLMX                                   | %     | [NT]                  | [NT]                                 | 41928-22  | 102%             |
| QUALITY CONTROL<br>PCBs in Soil                   | UNITS | Dup. Sm#              | Duplicate<br>Base + Duplicate + %RPD | Spike Sm# | Spike % Recovery |
| Date extracted                                    | -     | [NT]                  | [NT]                                 | 41928-22  | 08/06/2010       |
| Date analysed                                     | -     | [NT]                  | [NT]                                 | 41928-22  | 10/06/2010       |
| Arochlor 1016                                     | mg/kg | [NT]                  | [NT]                                 | [NR]      | [NR]             |
| Arochlor 1221*                                    | mg/kg | [NT]                  | [NT]                                 | [NR]      | [NR]             |
| Arochlor 1232                                     | mg/kg | [NT]                  | [NT]                                 | [NR]      | [NR]             |
| Arochlor 1242                                     | mg/kg | [NT]                  | [NT]                                 | [NR]      | [NR]             |
| Arochlor 1248                                     | mg/kg | [NT]                  | [NT]                                 | [NR]      | [NR]             |
| Arochlor 1254                                     | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 117%             |
| Arochlor 1260                                     | mg/kg | [NT]                  | [NT]                                 | [NR]      | [NR]             |
| Surrogate TCLMX                                   | %     | [NT]                  | [NT]                                 | 41928-22  | 102%             |
| QUALITY CONTROL                                   | UNITS | Dup. Sm#              | Duplicate                            | Spike Sm# | Spike % Recovery |
| Acid Extractable metals in soil                   |       |                       | Base + Duplicate + %RPD              |           |                  |
| Date digested                                     | -     | [NT]                  | [NT]                                 | 41928-22  | 08/06/2010       |
| Date analysed                                     | -     | [NT]                  | [NT]                                 | 41928-22  | 08/06/2010       |
| Arsenic                                           | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 99%              |
| Cadmium                                           | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 99%              |
| Chromium                                          | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 104%             |
| Copper                                            | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 107%             |
| Lead                                              | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 99%              |
| Mercury                                           | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 102%             |
| Nickel                                            | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 103%             |
| Zinc                                              | mg/kg | [NT]                  | [NT]                                 | 41928-22  | 102%             |



### **Report Comments:**

Asbestos: A portion of the supplied sample was sub-sampled for asbestos according to Envirolab

procedures. We cannot guarantee that this sub-sample is indicative of the entire sample.

Envirolab recommends supplying 30-40g of sample in it's own container.

Asbestos was analysed by Approved Identifier: Matt Mansfield

Asbestos was authorised by Approved Signatory: Matt Mansfield

INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested <: Less than >: Greater than **RPD: Relative Percent Difference** NA: Test not required LCS: Laboratory Control Sample NR: Not requested

### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

### Laboratory Acceptance Criteria:

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

41928





Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

# SAMPLE RECEIPT ADVICE

| Client:                               |                   |
|---------------------------------------|-------------------|
| Douglas Partners                      | ph: 02 9809 0666  |
| 96 Hermitage Rd                       | Fax: 02 9809 4095 |
| West Ryde NSW 2114                    |                   |
| Attention: Peter Oitmaa               |                   |
| Sample log in details:                |                   |
| Your reference:                       | 71682, Parramatta |
| Envirolab Reference:                  | 41928             |
| Date received:                        | 07/06/10          |
| Date results expected to be reported: | 15/06/10          |
|                                       |                   |
|                                       |                   |

| Samples received in appropriate condition for analysis: | YES               |
|---------------------------------------------------------|-------------------|
| No. of samples provided                                 | 24 Soils, 1 Water |
| Turnaround time requested:                              | Standard          |
| Temperature on receipt                                  | Cool              |
| Cooling Method:                                         | Ice Pack          |

### Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

# Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

|             | 2067                 |             | 0 6201<br>m air              | וימת |                | Sedurity: Intact/Broken/None                         | Received by:<br>Ten <b>p: Cool/Amblent</b> | Date received: | Job No: | UN/0100 Chatswood NSW 2067 | Envirolab Services |          | Envirolab Sarvices | CINIOIO Chatswood NSW 2067<br>Ph: 9910 6200 | JOD NO: 41925 | Data received: 7 16 110<br>Time received: 50 cm | Received by: JMC<br>Temo: Cbd/Ambient | Cooling: leangebuch<br>Security: filadiarcheniNocy | 566          | 395          | Time: 7/6/10   | Time:      |
|-------------|----------------------|-------------|------------------------------|------|----------------|------------------------------------------------------|--------------------------------------------|----------------|---------|----------------------------|--------------------|----------|--------------------|---------------------------------------------|---------------|-------------------------------------------------|---------------------------------------|----------------------------------------------------|--------------|--------------|----------------|------------|
| ę           | MSN po               |             | ax: 02 9910<br>ervices cor   |      |                | TCLP<br>(Metals/<br>PAH)                             |                                            |                |         |                            |                    |          |                    |                                             |               |                                                 |                                       | -                                                  | (02) 9809 06 | (02) 9809 4( | Date & T       | Date & '   |
|             | ices<br>et. Chatswoo | otaras      | 0 6200 F                     |      |                | Asbestos                                             |                                            |                |         | >                          |                    |          |                    | >                                           | >             |                                                 |                                       |                                                    | Phone:       | Fax:         | the            |            |
| irolah Son. | Ashley Stre          | 1: Tania No | one: 02 991<br>ail: tnotaras |      |                | Phenols                                              |                                            |                |         |                            |                    |          |                    |                                             |               |                                                 |                                       |                                                    |              |              | ived By: 🤺     | ived By: / |
| To.<br>En   | 12.                  | Attr        | Phc<br>Em                    |      | Analytes       | PCB                                                  |                                            |                |         |                            |                    |          |                    |                                             |               |                                                 |                                       |                                                    |              |              | 300 hay Rece   | Rece       |
|             |                      |             |                              |      |                | PAH 00                                               |                                            |                |         |                            |                    |          |                    |                                             |               |                                                 |                                       |                                                    |              | /de 2114     | ne: 7/6 1      | ne:        |
| •           | 0/40                 | 4 518       |                              |      |                | BTEX/<br>TPH                                         |                                            |                |         |                            |                    |          |                    |                                             |               |                                                 |                                       |                                                    |              | d, West Ry   | Date & Tir     | Date & Tir |
|             | Pm                   | e: 0412 57  | com.au<br>Quote No.          |      |                | 8 Metals<br>(As, Cd,<br>Cr, Cu,<br>Pb, Hg,<br>Zn Ni) |                                            |                |         |                            |                    |          |                    |                                             |               |                                                 |                                       |                                                    |              | mitage Road  |                |            |
| A           | Sampler:             | Mob. Phon   | ispartners.                  |      |                | Container<br>type                                    | Jar                                        |                |         |                            | 4                  | N1<br>17 |                    |                                             |               |                                                 |                                       |                                                    | -            | 55. 96 Her   | full<br>m      |            |
| TEAMAT      | 2                    | aa          | a@dougla                     | - 0  | Sample<br>Type | S - soil<br>W – water                                | S                                          |                |         |                            |                    |          |                    |                                             |               |                                                 | -                                     |                                                    |              | Addres       | Signed:        | Signed:    |
| PAR         | 71683                | ster Oitma  | ter.oitma                    |      |                | Sampling<br>Date                                     | 28.5                                       | 28.5           | ۱.6     | 2-Ġ                        | 2.6                | 31.5     | 31.5               | 31-5                                        | 31-5          | 25.5                                            | 5.52                                  | 25-5                                               |              | Partners     |                |            |
|             |                      | Pe          | a :                          | =    |                | Lab                                                  | -                                          | t              | 3       | ٦                          | 5                  | و        | <i>י</i> ן         | <b>~</b>                                    | 5             | 0                                               | 5                                     | 2                                                  |              | ouglas       | ð              |            |
| Name:       | No:                  | t Mgr:      | equired:                     |      |                | Sample<br>Depth                                      | o<br>S                                     | 0-1            | 0.5     | 0.5                        | 1.0                | ٥٠٤      | 1-0                | 0.5                                         | 1.0           | 0-1                                             | 0.ک                                   | 0-1                                                | rt No.       | ults to: C   | ed by: $P_{I}$ | ed by:     |
| Project     | Project              | Project     | Email:<br>Date R             |      |                | Sample<br>ID                                         | BHI                                        | BH I           | BH2     | BH3                        | BH3                | BH4      | BH4                | BHS                                         | BHS           | внЬ                                             | BHb                                   | BHB                                                | Lab Repo     | Send Res     | Relinquish     | Relinquish |

Douglas Partners Geatechnics - Environment - Groundwater

Form COC Rev0/November 2006

Page 1 of 2-

|                        | D <b>ugla</b> .<br>echnics - En | S Part<br>vironment - Gr | <b>IDETS</b><br>oundwater |                       |                   |                                                       |              |                |         |                 |                           |                   | CHAII                           | V OF CUSTODY |
|------------------------|---------------------------------|--------------------------|---------------------------|-----------------------|-------------------|-------------------------------------------------------|--------------|----------------|---------|-----------------|---------------------------|-------------------|---------------------------------|--------------|
| Project I<br>Project N | Vame:<br>Vo:                    |                          | PARRAN<br>71682           | MATTA                 | Jampler:          | Pwo/A                                                 | đ            |                | To:     | Envire<br>12 As | olab Servic<br>thev Stree | ces<br>t Chatswor | AOC WSN b                       |              |
| Project I              | vigr:                           | Ĕď                       | ster Oitma                | la la                 | Mob. Phone        | e: 0412 57                                            | 4 518        |                | :       | Attn:           | Tania Not                 | aras              |                                 |              |
| Email:<br>Date Re      | quìred:                         | ă                        | ster.oitmax               | e<br>D<br>dougle      | spartners.        | com.au<br>Quote No.                                   |              |                |         | Phon<br>Email   | e: 02 9910<br>: tnotaras( | 0 6200 F          | ax: 02 9910 6:<br>ervices.com.a | 201<br>U     |
|                        |                                 |                          |                           | Sample                |                   |                                                       |              |                | <       | -               |                           | )                 |                                 |              |
|                        |                                 |                          |                           | Type                  |                   |                                                       |              |                | A       | nalytes         |                           |                   | <del></del>                     |              |
| Sample                 | Sampl<br>Depth                  | e Lab                    | Sampling<br>Date          | S - soil<br>W – water | type<br>Container | 8 Metals<br>(As, Cd,<br>Cr, Cu,<br>Pb, Hg,<br>Zn, Ni) | втех/<br>трн | РАН            | 000 ODD |                 | Phenols                   | Asbestos          | <b>TCLP</b><br>(Metals/<br>PAH) | Notes        |
| BH7                    | 0.1                             | 5                        | 25-S                      | S                     | Jer               |                                                       |              |                |         |                 |                           |                   |                                 |              |
| BH7                    | 50                              | 코                        | 25-5                      |                       |                   |                                                       |              |                |         |                 |                           |                   |                                 |              |
| BH8                    | 0.5                             | 5                        | 27.5                      |                       |                   |                                                       |              |                | <br>    |                 |                           | >                 |                                 |              |
| внв                    | 0.1                             | 16                       | 5.42                      |                       |                   |                                                       |              |                |         |                 |                           |                   |                                 |              |
| BH9                    | 0.S                             | 4                        | 28.5                      |                       |                   |                                                       |              |                | ·       |                 |                           | 2                 |                                 |              |
| BH9                    | 1,0                             | (8)                      | 28-5                      |                       |                   |                                                       |              |                |         |                 |                           |                   |                                 |              |
| QHQ                    | 0.5                             | Q                        | 2.6                       |                       |                   |                                                       |              |                |         |                 |                           | >                 |                                 |              |
| BHID                   | 0.1                             | \$                       | J.b                       |                       |                   |                                                       |              |                |         |                 |                           | >                 |                                 |              |
| DUP3                   | NA                              | 21                       | 28.5                      |                       |                   |                                                       |              |                |         |                 |                           |                   |                                 |              |
| DUP4                   | N A                             | 22                       | 25.5                      |                       |                   |                                                       |              |                |         |                 |                           |                   |                                 |              |
| BLANK<br>SPIKE         | 1 2                             | 2 a                      | 28.5                      |                       |                   |                                                       |              |                |         |                 |                           |                   |                                 |              |
| RINSZ                  | 4<br>Z                          | ъ́с                      | 2.6                       | ß                     | Buttles           |                                                       |              |                |         |                 |                           |                   |                                 |              |
| Lab Report             | No.                             |                          |                           |                       |                   |                                                       |              |                |         |                 |                           | Phone:            | (02) 9809 0666                  | _            |
| Send Resu              | lts to:                         | Dougla                   | s Partners                | S Addre:              | ss: 96 Her        | mitage Roa                                            | d, West Ry   | de 2114        |         |                 |                           | Fax:              | (02) 9809 4095                  |              |
| Relinquishe            | d by:                           | Pm0                      |                           | Signed:               | MUN               |                                                       | Date & Tin   | ne: <b>7/6</b> | 1300    | Receiv          | ed By: 🖌                  | 322               | Date & Tim                      | a            |
| Relinquishe            | d by:                           |                          |                           | Signed:               |                   |                                                       | Date & Tir   | ne:            |         | Receiv          | ed By: 🖌                  | -                 | Date & Tim                      |              |
| ,                      |                                 |                          |                           |                       |                   |                                                       |              |                |         |                 |                           |                   |                                 |              |

Form COC Rev0/November 2006

Page 2 of 2



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

# CERTIFICATE OF ANALYSIS 41928-A

Client: Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Peter Oitmaa

### Sample log in details:

Your Reference: No. of samples: Date samples received: Date completed instructions received:

# 71682, Parramatta

Additional Testing on 8 Soils 07/06/10 17/06/10

# Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.* 

### **Report Details:**

 Date results requested by:
 24/06/10

 Date of Preliminary Report:
 Not Issued

 Issue Date:
 22/06/10

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 This document is issued in accordance with NATA's accreditation requirements.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with \*.

**Results Approved By:** 

Jacinta/Hurst Laboratory Manager

Envirolab Reference: 4 Revision No: F

41928-A R 00





| Metals in TCLP USEPA1311              |          |            |           |           |            |            |
|---------------------------------------|----------|------------|-----------|-----------|------------|------------|
| Our Reference:                        | UNITS    | 41928-A-1  | 41928-A-3 | 41928-A-4 | 41928-A-8  | 41928-A-9  |
| Your Reference                        |          | BH1/0.5    | BH2/0.5   | BH3/0.5   | BH5/0.5    | BH5/1.0    |
| Date Sampled                          |          | 28/05/2010 | 1/06/2010 | 2/06/2010 | 31/05/2010 | 31/05/2010 |
| Type of sample                        |          | Soil       | Soil      | Soil      | Soil       | Soil       |
| Date extracted                        | -        | 21/6/2010  | 21/6/2010 | 21/6/2010 | 21/6/2010  | 21/6/2010  |
| Date analysed                         | -        | 21/6/2010  | 21/6/2010 | [NA]      | 21/6/2010  | 21/6/2010  |
| pH of soil for fluid# determ.         | pH units | 8.70       | 9.10      | 9.40      | 9.10       | 9.30       |
| pH of soil for fluid # determ. (acid) | pH units | 1.30       | 1.40      | 1.40      | 1.60       | 1.50       |
| Extraction fluid used                 | -        | 1          | 1         | 1         | 1          | 1          |
| pH of final Leachate                  | pH units | 6.20       | 5.80      | 6.40      | 6.40       | 6.30       |
| Lead in TCLP                          | mg/L     | 0.1        | 0.07      | [NA]      | 0.07       | 0.9        |
| Mercury in TCLP                       | mg/L     | [NA]       | [NA]      | [NA]      | [NA]       | 0.0010     |

| Metals in TCLP USEPA1311              |          |            |            |            |
|---------------------------------------|----------|------------|------------|------------|
| Our Reference:                        | UNITS    | 41928-A-10 | 41928-A-13 | 41928-A-15 |
| Your Reference                        |          | BH6/0.1    | BH7/0.1    | BH8/0.5    |
| Date Sampled                          |          | 25/05/2010 | 25/05/2010 | 27/05/2010 |
| Type of sample                        |          | Soil       | Soil       | Soil       |
| Date extracted                        | -        | 21/6/2010  | 21/6/2010  | 21/6/2010  |
| Date analysed                         | -        | 21/6/2010  | 21/6/2010  | 21/6/2010  |
| pH of soil for fluid# determ.         | pH units | 9.70       | 9.90       | 9.70       |
| pH of soil for fluid # determ. (acid) | pH units | 1.40       | 1.30       | 1.30       |
| Extraction fluid used                 | -        | 1          | 1          | 1          |
| pH of final Leachate                  | pH units | 6.00       | 5.10       | 5.20       |
| Lead in TCLP                          | mg/L     | 0.03       | [NA]       | [NA]       |
| Nickel in TCLP                        | mg/L     | [NA]       | 0.06       | 0.1        |

Envirolab Reference: 41928-A **Revision No:** R 00



| Client | Reference: | 71682, | Parramatta |
|--------|------------|--------|------------|
|--------|------------|--------|------------|

| PAHs in TCLP (USEPA 1311)      |       |            |            |            |
|--------------------------------|-------|------------|------------|------------|
| Our Reference:                 | UNITS | 41928-A-3  | 41928-A-4  | 41928-A-8  |
| Your Reference                 |       | BH2/0.5    | BH3/0.5    | BH5/0.5    |
| Date Sampled                   |       | 1/06/2010  | 2/06/2010  | 31/05/2010 |
| Type of sample                 |       | Soil       | Soil       | Soil       |
| Date extracted                 | -     | 18/06/2010 | 18/06/2010 | 18/06/2010 |
| Date analysed                  | -     | 19/06/2010 | 19/06/2010 | 19/06/2010 |
| Naphthalene in TCLP            | mg/L  | <0.001     | <0.001     | <0.001     |
| Acenaphthylene in TCLP         | mg/L  | <0.001     | <0.001     | <0.001     |
| Acenaphthene in TCLP           | mg/L  | <0.001     | <0.001     | <0.001     |
| Fluorene in TCLP               | mg/L  | <0.001     | <0.001     | <0.001     |
| Phenanthrene in TCLP           | mg/L  | <0.001     | <0.001     | <0.001     |
| Anthracene in TCLP             | mg/L  | <0.001     | <0.001     | <0.001     |
| Fluoranthene in TCLP           | mg/L  | <0.001     | <0.001     | <0.001     |
| Pyrene in TCLP                 | mg/L  | <0.001     | <0.001     | <0.001     |
| Benzo(a)anthracene in TCLP     | mg/L  | <0.001     | <0.001     | <0.001     |
| Chrysene in TCLP               | mg/L  | <0.001     | <0.001     | <0.001     |
| Benzo(b+k)fluoranthene in TCLP | mg/L  | <0.002     | <0.002     | <0.002     |
| Benzo(a)pyrene in TCLP         | mg/L  | <0.001     | <0.001     | <0.001     |
| Indeno(1,2,3-c,d)pyrene - TCLP | mg/L  | <0.001     | <0.001     | <0.001     |
| Dibenzo(a,h)anthracene in TCLP | mg/L  | <0.001     | <0.001     | <0.001     |
| Benzo(g,h,i)perylene in TCLP   | mg/L  | <0.001     | <0.001     | <0.001     |
| Surrogate p-Terphenyl-d14      | %     | 78         | 79         | 139        |
|                                |       |            |            |            |

Envirolab Reference: 41928-A **Revision No:** 



| Method ID            | Methodology Summary                                                                                            |
|----------------------|----------------------------------------------------------------------------------------------------------------|
| LAB.4                | Toxicity Characteristic Leaching Procedure (TCLP).                                                             |
| EXTRACT.7            | Toxicity Characteristic Leaching Procedure (TCLP).                                                             |
| LAB.1                | pH - Measured using pH meter and electrode in accordance with APHA 20th ED, 4500-H+.                           |
| Metals.20<br>ICP-AES | Determination of various metals by ICP-AES.                                                                    |
| Metals.21<br>CV-AAS  | Determination of Mercury by Cold Vapour AAS.                                                                   |
| GC.12 subset         | Leachates are extracted with Dichloromethane and analysed by GC-MS.                                            |
| GC.12 subset         | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. |
| GC.12                | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. |



| QUALITY CONTROL             | UNITS | PQL    | METHOD               | Blank         | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
|-----------------------------|-------|--------|----------------------|---------------|---------------|---------------------------|-----------|---------------------|
| Metals in TCLP<br>USEPA1311 |       |        |                      |               |               | Base II Duplicate II %RPD |           |                     |
| Date extracted              | -     |        |                      | 21/6/20<br>10 | [NT]          | [NT]                      | LCS-1     | 21/6/2010           |
| Date analysed               | -     |        |                      | 21/6/20<br>10 | [NT]          | [NT]                      | LCS-1     | 21/6/2010           |
| Lead in TCLP                | mg/L  | 0.03   | Metals.20<br>ICP-AES | <0.03         | [NT]          | [NT]                      | LCS-1     | 90%                 |
| Mercury in TCLP             | mg/L  | 0.0005 | Metals.21<br>CV-AAS  | <0.000<br>5   | [NT]          | [NT]                      | LCS-1     | 118%                |
| Nickel in TCLP              | mg/L  | 0.02   | Metals.20<br>ICP-AES | <0.02         | [NT]          | [NT]                      | LCS-1     | 91%                 |

| QUALITY CONTROL                   | UNITS | PQL   | METHOD          | Blank          | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
|-----------------------------------|-------|-------|-----------------|----------------|---------------|---------------------------|-----------|---------------------|
| PAHs in TCLP (USEPA<br>1311)      |       |       |                 |                |               | Base II Duplicate II %RPD |           |                     |
| Date extracted                    | -     |       |                 | 18/06/2<br>010 | [NT]          | [NT]                      | LCS-W2    | 18/06/2010          |
| Date analysed                     | -     |       |                 | 18/06/2<br>010 | [NT]          | [NT]                      | LCS-W2    | 18/06/2010          |
| Naphthalene in TCLP               | mg/L  | 0.001 | GC.12<br>subset | <0.001         | [NT]          | [NT]                      | LCS-W2    | 99%                 |
| Acenaphthylene in TCLP            | mg/L  | 0.001 | GC.12<br>subset | <0.001         | [NT]          | [NT]                      | [NR]      | [NR]                |
| Acenaphthene in TCLP              | mg/L  | 0.001 | GC.12<br>subset | <0.001         | [NT]          | [NT]                      | [NR]      | [NR]                |
| Fluorene in TCLP                  | mg/L  | 0.001 | GC.12<br>subset | <0.001         | [NT]          | [NT]                      | LCS-W2    | 102%                |
| Phenanthrene in TCLP              | mg/L  | 0.001 | GC.12<br>subset | <0.001         | [NT]          | [NT]                      | LCS-W2    | 103%                |
| Anthracene in TCLP                | mg/L  | 0.001 | GC.12<br>subset | <0.001         | [NT]          | [NT]                      | [NR]      | [NR]                |
| Fluoranthene in TCLP              | mg/L  | 0.001 | GC.12<br>subset | <0.001         | [NT]          | [NT]                      | LCS-W2    | 105%                |
| Pyrene in TCLP                    | mg/L  | 0.001 | GC.12<br>subset | <0.001         | [NT]          | [NT]                      | LCS-W2    | 110%                |
| Benzo(a)anthracene in<br>TCLP     | mg/L  | 0.001 | GC.12<br>subset | <0.001         | [NT]          | [NT]                      | [NR]      | [NR]                |
| Chrysene in TCLP                  | mg/L  | 0.001 | GC.12<br>subset | <0.001         | [NT]          | [NT]                      | LCS-W2    | 107%                |
| Benzo(b+k)fluoranthene<br>in TCLP | mg/L  | 0.002 | GC.12<br>subset | <0.002         | [NT]          | [NT]                      | [NR]      | [NR]                |
| Benzo(a)pyrene in TCLP            | mg/L  | 0.001 | GC.12<br>subset | <0.001         | [NT]          | [NT]                      | LCS-W2    | 122%                |
| Indeno(1,2,3-c,d)pyrene<br>- TCLP | mg/L  | 0.001 | GC.12<br>subset | <0.001         | [NT]          | [NT]                      | [NR]      | [NR]                |
| Dibenzo(a,h)anthracene<br>in TCLP | mg/L  | 0.001 | GC.12<br>subset | <0.001         | [NT]          | [NT]                      | [NR]      | [NR]                |
| Benzo(g,h,i)perylene in<br>TCLP   | mg/L  | 0.001 | GC.12<br>subset | <0.001         | [NT]          | [NT]                      | [NR]      | [NR]                |

Envirolab Reference: Revision No:

41928-A R 00



Page 5 of 7

| Client Reference: 71682, Parramatta    |       |     |        |       |               |                                             |           |                     |  |
|----------------------------------------|-------|-----|--------|-------|---------------|---------------------------------------------|-----------|---------------------|--|
| QUALITY CONTROL<br>PAHs in TCLP (USEPA | UNITS | PQL | METHOD | Blank | Duplicate Sm# | Duplicate results Base II Duplicate II %RPD | Spike Sm# | Spike %<br>Recovery |  |
| 1311)                                  |       |     |        |       |               |                                             |           |                     |  |
| Surrogate<br>p-Terphenyl-d14           | %     |     | GC.12  | 75    | [NT]          | [NT]                                        | LCS-W2    | 74%                 |  |


# **Report Comments:**

Asbestos was analysed by Approved Identifier: Not applicable for this job Asbestos was authorised by Approved Signatory: Not applicable for this job INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested <: Less than >: Greater than **RPD: Relative Percent Difference** NA: Test not required LCS: Laboratory Control Sample NR: Not requested

# **Quality Control Definitions**

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

# Laboratory Acceptance Criteria:

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

Envirolab Reference: **Revision No:** R 00

41928-A



|                                           | <u>IN OF CUSTODY</u><br>167<br>3201<br>84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Notes<br>Samples<br>at E.S.                                                                                                                                                                                                                                                                                                            | ii 17 (6) (J                                                                          |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 011<br>110                                | CHA<br>Services<br>Street, Chatswood NSW 20<br>a Notaras<br>9910 6200 Fax: 02 9910 (<br>aras@envirolabservices.com.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                        | Phone: (02) 9809 0666<br>Fax: (02) 9809 4095<br>ML Date & Tim<br>Date & Tim           |
| NUINIALA REFE 4 1928<br>NU 24 14<br>24 14 | Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation         Openation <t< td=""><td>Analytes<br/>Analytes<br/>V:<br/>Analytes</td><td>2114<br/>11 00 ws 17/6 Received By:<br/>Received By:</td></t<> | Analytes<br>Analytes<br>V:<br>Analytes                                                                                                                                                                                                                                                                                                 | 2114<br>11 00 ws 17/6 Received By:<br>Received By:                                    |
|                                           | er. <i>PMO</i><br><sup>p</sup> hone: 0412 574 518<br>hers.com.au<br>Lab Quote No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TCLP TCLP<br>PAHS<br>Pb<br>P<br>P                                                                                                                                                                                                                                                                                                      | Hermitage Road, West Ryde 2<br>Date & Time:<br>Date & Time:                           |
| rtners<br>Guundwater                      | Peter Oitmaa@douglaspart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                 | is Partners Address, 96<br>Signed: <u>100</u><br>Signed:                              |
|                                           | Project Name:<br>Project No:<br>Project Mgr:<br>Email:<br>Date Required:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample         Sample         La           ID         Depth         ID           ID         Depth         ID           BH2         0.5         3           BH5         0.5         3           BH5         0.5         3           BH5         1.0         3           BH3         0.1         13           BH3         0.1         13 | Lab Report No<br>Send Results to: Dougls<br>Relinquished by: PM D<br>Relinquished by: |

Form COC RevOlNovember 2006



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

# CERTIFICATE OF ANALYSIS 42964

<u>Client:</u> Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Peter Oitmaa

# Sample log in details:

Your Reference: No. of samples: Date samples received: Date completed instructions received:

#### 71682, Cumberland Newspapers Redevelop 3 Waters

02/07/10 02/07/10

# Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.* 

# **Report Details:**

 Date results requested by:
 9/07/10

 Date of Preliminary Report:
 Not Issued

 Issue Date:
 9/07/10

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 This document is issued in accordance with NATA's accreditation requirements.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with \*.

**Results Approved By:** 

Sandra Taylor Senior Organic Chemist

Kluign Morgen

Rhian Morgan Metals Supervisor

Nick Sarlamis Inorganics Supervisor

Envirolab Reference: 4 Revision No: R

42964 R 00



Page 1 of 19

| VOCs in water             |       |            |            |            |
|---------------------------|-------|------------|------------|------------|
| Our Reference:            | UNITS | 42964-1    | 42964-2    | 42964-3    |
| Your Reference            |       | GW4        | GW5        | RINS4      |
| Date Sampled              |       | 2/07/2010  | 2/07/2010  | 2/07/2010  |
| Type of sample            |       | Water      | Water      | Water      |
| Date extracted            | -     | 08/07/2010 | 08/07/2010 | 08/07/2010 |
| Date analysed             | -     | 08/07/2010 | 08/07/2010 | 08/07/2010 |
| Dichlorodifluoromethane   | µg/L  | <100       | <100       | <10        |
| Chloromethane             | µg/L  | <100       | <100       | <10        |
| Vinyl Chloride            | µg/L  | <100       | <100       | <10        |
| Bromomethane              | µg/L  | <100       | <100       | <10        |
| Chloroethane              | µg/L  | <100       | <100       | <10        |
| Trichlorofluoromethane    | µg/L  | <100       | <100       | <10        |
| 1,1-Dichloroethene        | µg/L  | <10        | <10        | <1.0       |
| Trans-1,2-dichloroethene  | µg/L  | <10        | <10        | <1.0       |
| 1,1-dichloroethane        | µg/L  | <10        | <10        | <1.0       |
| Cis-1,2-dichloroethene    | µg/L  | <10        | <10        | <1.0       |
| Bromochloromethane        | µg/L  | <10        | <10        | <1.0       |
| Chloroform                | µg/L  | <10        | 12         | <1.0       |
| 2,2-dichloropropane       | µg/L  | <10        | <10        | <1.0       |
| 1,2-dichloroethane        | µg/L  | <10        | <10        | <1.0       |
| 1,1,1-trichloroethane     | µg/L  | <10        | <10        | <1.0       |
| 1,1-dichloropropene       | µg/L  | <10        | <10        | <1.0       |
| Cyclohexane               | µg/L  | <10        | <10        | <1.0       |
| Carbon tetrachloride      | µg/L  | <10        | <10        | <1.0       |
| Benzene                   | µg/L  | <10        | <10        | <1.0       |
| Dibromomethane            | µg/L  | <10        | <10        | <1.0       |
| 1,2-dichloropropane       | µg/L  | <10        | <10        | <1.0       |
| Trichloroethene           | µg/L  | <10        | <10        | <1.0       |
| Bromodichloromethane      | µg/L  | <10        | <10        | <1.0       |
| trans-1,3-dichloropropene | µg/L  | <10        | <10        | <1.0       |
| cis-1,3-dichloropropene   | µg/L  | <10        | <10        | <1.0       |
| 1,1,2-trichloroethane     | µg/L  | <10        | <10        | <1.0       |
| Toluene                   | µg/L  | <10        | <10        | <1.0       |
| 1,3-dichloropropane       | µg/L  | <10        | <10        | <1.0       |
| Dibromochloromethane      | µg/L  | <10        | <10        | <1.0       |
| 1,2-dibromoethane         | µg/L  | <10        | <10        | <1.0       |
| Tetrachloroethene         | µg/L  | <10        | <10        | <1.0       |
| 1,1,1,2-tetrachloroethane | µg/L  | <10        | <10        | <1.0       |
| Chlorobenzene             | µg/L  | <10        | <10        | <1.0       |
| Ethylbenzene              | µg/L  | <10        | <10        | <1.0       |
| Bromoform                 | µg/L  | <10        | <10        | <1.0       |
| m+p-xylene                | µg/L  | <20        | <20        | <2.0       |
| Styrene                   | µg/L  | <10        | <10        | <1.0       |
| 1,1,2,2-tetrachloroethane | µg/L  | <10        | <10        | <1.0       |

ACCREDITED FOR TECHNICAL COMPETENCE **Client Reference:** 

71682, Cumberland Newspapers Redevelop

| VOCs in water                  |       |           |           |           |
|--------------------------------|-------|-----------|-----------|-----------|
| Our Reference:                 | UNITS | 42964-1   | 42964-2   | 42964-3   |
| Your Reference                 |       | GW4       | GW5       | RINS4     |
| Date Sampled                   |       | 2/07/2010 | 2/07/2010 | 2/07/2010 |
| Type of sample                 |       | Water     | Water     | Water     |
| o-xylene                       | µg/L  | <10       | <10       | <1.0      |
| 1,2,3-trichloropropane         | µg/L  | <10       | <10       | <1.0      |
| Isopropylbenzene               | µg/L  | <10       | <10       | <1.0      |
| Bromobenzene                   | µg/L  | <10       | <10       | <1.0      |
| n-propyl benzene               | µg/L  | <10       | <10       | <1.0      |
| 2-chlorotoluene                | µg/L  | <10       | <10       | <1.0      |
| 4-chlorotoluene                | µg/L  | <10       | <10       | <1.0      |
| 1,3,5-trimethyl benzene        | µg/L  | <10       | <10       | <1.0      |
| Tert-butyl benzene             | µg/L  | <10       | <10       | <1.0      |
| 1,2,4-trimethyl benzene        | µg/L  | <10       | <10       | <1.0      |
| 1,3-dichlorobenzene            | µg/L  | <10       | <10       | <1.0      |
| Sec-butyl benzene              | µg/L  | <10       | <10       | <1.0      |
| 1,4-dichlorobenzene            | µg/L  | <10       | <10       | <1.0      |
| 4-isopropyl toluene            | µg/L  | <10       | <10       | <1.0      |
| 1,2-dichlorobenzene            | µg/L  | <10       | <10       | <1.0      |
| n-butyl benzene                | µg/L  | <10       | <10       | <1.0      |
| 1,2-dibromo-3-chloropropane    | µg/L  | <10       | <10       | <1.0      |
| 1,2,4-trichlorobenzene         | µg/L  | <10       | <10       | <1.0      |
| Hexachlorobutadiene            | µg/L  | <10       | <10       | <1.0      |
| 1,2,3-trichlorobenzene         | µg/L  | <10       | <10       | <1.0      |
| Surrogate Dibromofluoromethane | %     | 125       | 124       | 121       |
| Surrogate toluene-d8           | %     | 80        | 66        | 86        |
| Surrogate 4-BFB                | %     | 103       | 102       | 103       |

ACCREDITED FOR TECHNICAL COMPETENCE

| Client | Referenc |
|--------|----------|
| •      |          |

e: 71682, Cumberland Newspapers Redevelop

| vTPH & BTEX in Water           |       |            |            |            |
|--------------------------------|-------|------------|------------|------------|
| Our Reference:                 | UNITS | 42964-1    | 42964-2    | 42964-3    |
| Your Reference                 |       | GW4        | GW5        | RINS4      |
| Date Sampled                   |       | 2/07/2010  | 2/07/2010  | 2/07/2010  |
| Type of sample                 |       | Water      | Water      | Water      |
| Date extracted                 | -     | 08/07/2010 | 08/07/2010 | 08/07/2010 |
| Date analysed                  | -     | 08/07/2010 | 08/07/2010 | 08/07/2010 |
| TPH C6 - C9                    | µg/L  | <100       | <100       | <10        |
| Benzene                        | µg/L  | <10        | <10        | <1.0       |
| Toluene                        | µg/L  | <10        | <10        | <1.0       |
| Ethylbenzene                   | µg/L  | <10        | <10        | <1.0       |
| m+p-xylene                     | µg/L  | <20        | <20        | <2.0       |
| o-xylene                       | µg/L  | <10        | <10        | <1.0       |
| Surrogate Dibromofluoromethane | %     | 125        | 124        | 121        |
| Surrogate toluene-d8           | %     | 80         | 66         | 86         |
| Surrogate 4-BFB                | %     | 103        | 102        | 103        |

# Client Reference: 71682, Cumberland Newspapers Redevelop

| sTPH in Water (C10-C36)               |       |           |           |
|---------------------------------------|-------|-----------|-----------|
| Our Reference:                        | UNITS | 42964-2   | 42964-3   |
| Your Reference                        |       | GW5       | RINS4     |
| Date Sampled                          |       | 2/07/2010 | 2/07/2010 |
| Type of sample                        |       | Water     | Water     |
| Date extracted                        | -     | 6/7/2010  | 6/7/2010  |
| Date analysed                         | -     | 6/7/2010  | 6/7/2010  |
| TPH C10 - C14                         | µg/L  | <50       | <50       |
| TPH C15 - C28                         | µg/L  | <100      | <100      |
| TPH C <sub>29</sub> - C <sub>36</sub> | µg/L  | <100      | <100      |
| Surrogate o-Terphenyl                 | %     | 110       | 112       |



| <b>Client Reference</b> | e: 71682, | Cumberland | Newspapers | Redevelop |
|-------------------------|-----------|------------|------------|-----------|
| •••.•.•                 | •• ••••-, | •••••••••  |            |           |

| PAHs in Water             |       |            |            |
|---------------------------|-------|------------|------------|
| Our Reference:            | UNITS | 42964-2    | 42964-3    |
| Your Reference            |       | GW5        | RINS4      |
| Date Sampled              |       | 2/07/2010  | 2/07/2010  |
| Type of sample            |       | Water      | Water      |
| Date extracted            | -     | 06/07/2010 | 06/07/2010 |
| Date analysed             | -     | 07/07/2010 | 07/07/2010 |
| Naphthalene               | µg/L  | <1         | <1         |
| Acenaphthylene            | µg/L  | <1         | <1         |
| Acenaphthene              | µg/L  | <1         | <1         |
| Fluorene                  | µg/L  | <1         | <1         |
| Phenanthrene              | µg/L  | <1         | <1         |
| Anthracene                | µg/L  | <1         | <1         |
| Fluoranthene              | µg/L  | <1         | <1         |
| Pyrene                    | µg/L  | <1         | <1         |
| Benzo(a)anthracene        | µg/L  | <1         | <1         |
| Chrysene                  | μg/L  | <1         | <1         |
| Benzo(b+k)fluoranthene    | μg/L  | <2         | <2         |
| Benzo(a)pyrene            | μg/L  | <1         | <1         |
| Indeno(1,2,3-c,d)pyrene   | μg/L  | <1         | <1         |
| Dibenzo(a,h)anthracene    | μg/L  | <1         | <1         |
| Benzo(g,h,i)perylene      | μg/L  | <1         | <1         |
| Surrogate p-Terphenyl-d14 | %     | 130        | 133        |

Envirolab Reference: 429 Revision No: R

42964 R 00



| OCP in water        |       |           |
|---------------------|-------|-----------|
| Our Reference:      | UNITS | 42964-2   |
| Your Reference      |       | GW5       |
| Date Sampled        |       | 2/07/2010 |
| Type of sample      |       | Water     |
| Date extracted      | -     | 6/7/2010  |
| Date analysed       | -     | 6/7/2010  |
| НСВ                 | µg/L  | <0.2      |
| alpha-BHC           | µg/L  | <0.2      |
| gamma-BHC           | µg/L  | <0.2      |
| beta-BHC            | µg/L  | <0.2      |
| Heptachlor          | µg/L  | <0.2      |
| delta-BHC           | µg/L  | <0.2      |
| Aldrin              | µg/L  | <0.2      |
| Heptachlor Epoxide  | µg/L  | <0.2      |
| gamma-Chlordane     | µg/L  | <0.2      |
| alpha-Chlordane     | µg/L  | <0.2      |
| Endosulfan I        | µg/L  | <0.2      |
| pp-DDE              | µg/L  | <0.2      |
| Dieldrin            | µg/L  | <0.2      |
| Endrin              | µg/L  | <0.2      |
| pp-DDD              | µg/L  | <0.2      |
| Endosulfan II       | µg/L  | <0.2      |
| pp-DDT              | µg/L  | <0.2      |
| Endrin Aldehyde     | µg/L  | <0.2      |
| Endosulfan Sulphate | µg/L  | <0.2      |
| Methoxychlor        | µg/L  | <0.2      |
| Surrogate TCLMX     | %     | 101       |



| OP Pesticides in water |       |           |
|------------------------|-------|-----------|
| Our Reference:         | UNITS | 42964-2   |
| Your Reference         |       | GW5       |
| Date Sampled           |       | 2/07/2010 |
| Type of sample         |       | Water     |
| Date extracted         | -     | 6/7/2010  |
| Date analysed          | -     | 6/7/2010  |
| Diazinon               | µg/L  | <0.2      |
| Dimethoate             | µg/L  | <0.2      |
| Chlorpyriphos-methyl   | µg/L  | <0.2      |
| Ronnel                 | µg/L  | <0.2      |
| Chlorpyriphos          | µg/L  | <0.2      |
| Fenitrothion           | µg/L  | <0.2      |
| Bromophos ethyl        | µg/L  | <0.2      |
| Ethion                 | µg/L  | <0.2      |
| Surrogate TCLMX        | %     | 101       |

ACCREDITED FOR TECHNICAL COMPETENCE

# Client Reference: 71682, Cumberland Newspapers Redevelop

| UNITS | 42964-2   |
|-------|-----------|
|       | GW5       |
|       | 2/07/2010 |
|       | Water     |
| -     | 6/7/2010  |
| -     | 6/7/2010  |
| µg/L  | <2        |
| µg/L  | <2        |
| µg/L  | <2        |
| µg/L  | <2        |
| µg/L  | <2        |
| µg/L  | <2        |
| µg/L  | <2        |
| %     | 101       |
|       | UNITS<br> |



### Client Reference: 7

# 71682, Cumberland Newspapers Redevelop

| Total Phenolics in Water    |       |           |
|-----------------------------|-------|-----------|
| Our Reference:              | UNITS | 42964-2   |
| Your Reference              |       | GW5       |
| Date Sampled                |       | 2/07/2010 |
| Type of sample              |       | Water     |
| Date extracted              | -     | 6/7/2010  |
| Date analysed               | -     | 6/7/2010  |
| Total Phenolics (as Phenol) | mg/L  | <0.050    |

42964 R 00



| Client Reference: | 71682, Cu | mberland Newspap | ers Redevelop |
|-------------------|-----------|------------------|---------------|
|-------------------|-----------|------------------|---------------|

| HM in water - dissolved |       |            |            |
|-------------------------|-------|------------|------------|
| Our Reference:          | UNITS | 42964-2    | 42964-3    |
| Your Reference          |       | GW5        | RINS4      |
| Date Sampled            |       | 2/07/2010  | 2/07/2010  |
| Type of sample          |       | Water      | Water      |
| Date prepared           | -     | 08/07/2010 | 08/07/2010 |
| Date analysed           | -     | 09/07/2010 | 09/07/2010 |
| Arsenic-Dissolved       | µg/L  | <1         | <1         |
| Cadmium-Dissolved       | µg/L  | 0.2        | <0.1       |
| Chromium-Dissolved      | µg/L  | 1          | <1         |
| Copper-Dissolved        | µg/L  | 8          | <1         |
| Lead-Dissolved          | µg/L  | 6          | <1         |
| Mercury-Dissolved       | μg/L  | <0.5       | <0.5       |
| Nickel-Dissolved        | μg/L  | 3          | <1         |
| Zinc-Dissolved          | μg/L  | 12         | <1         |



# Client Reference: 71682, Cumberland Newspapers Redevelop

| Method ID           | Methodology Summary                                                                                                                                                     |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GC.13               | Water samples are analysed directly by purge and trap GC-MS.                                                                                                            |
| GC.16               | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. |
| GC.3                | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.                                                         |
| GC.12 subset        | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.                                                          |
| GC-5                | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.                                             |
| GC.8                | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.                                             |
| GC-6                | Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.                                                         |
| LAB.30              | Total Phenolics - determined colorimetrically following disitillation.                                                                                                  |
| Metals.22<br>ICP-MS | Determination of various metals by ICP-MS.                                                                                                                              |
| Metals.21<br>CV-AAS | Determination of Mercury by Cold Vapour AAS.                                                                                                                            |

964 )0



#### **Client Reference:** 71682, Cumberland Newspapers Redevelop

| QUALITY CONTROL               | UNITS | PQL | METHOD | Blank   | Duplicate Sm# | Duplicate results          | Spike Sm# | Spike %    |
|-------------------------------|-------|-----|--------|---------|---------------|----------------------------|-----------|------------|
| VOCs in water                 |       |     |        |         |               | Raso II Duplicato II % PPD |           | Recovery   |
|                               |       |     |        |         |               |                            |           |            |
| Date extracted                | -     |     |        | 08/07/2 | [NT]          | [NT]                       | LCS-W1    | 08/07/2010 |
| Date analysed                 | -     |     |        | 08/07/2 | INTI          | INTI                       | LCS-W1    | 08/07/2010 |
|                               |       |     |        | 010     | []            | []                         |           | 00,01,2010 |
| Dichlorodifluoromethane       | µg/L  | 10  | GC.13  | <10     | [NT]          | [NT]                       | [NR]      | [NR]       |
| Chloromethane                 | µg/L  | 10  | GC.13  | <10     | [NT]          | [NT]                       | [NR]      | [NR]       |
| Vinyl Chloride                | µg/L  | 10  | GC.13  | <10     | [NT]          | [NT]                       | [NR]      | [NR]       |
| Bromomethane                  | μg/L  | 10  | GC.13  | <10     | [NT]          | [NT]                       | [NR]      | [NR]       |
| Chloroethane                  | µg/L  | 10  | GC.13  | <10     | [NT]          | [NT]                       | [NR]      | [NR]       |
| Trichlorofluoromethane        | µg/L  | 10  | GC.13  | <10     | [NT]          | [NT]                       | [NR]      | [NR]       |
| 1,1-Dichloroethene            | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| Trans-1,2-dichloroethen<br>e  | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| 1,1-dichloroethane            | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | LCS-W1    | 107%       |
| Cis-1,2-dichloroethene        | μg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| Bromochloromethane            | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| Chloroform                    | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | LCS-W1    | 113%       |
| 2,2-dichloropropane           | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| 1,2-dichloroethane            | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | LCS-W1    | 104%       |
| 1,1,1-trichloroethane         | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | LCS-W1    | 108%       |
| 1,1-dichloropropene           | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| Cyclohexane                   | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| Carbon tetrachloride          | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| Benzene                       | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| Dibromomethane                | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| 1,2-dichloropropane           | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| Trichloroethene               | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | LCS-W1    | 101%       |
| Bromodichloromethane          | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | LCS-W1    | 122%       |
| trans-1,3-dichloropropen<br>e | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| cis-1,3-dichloropropene       | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| 1,1,2-trichloroethane         | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| Toluene                       | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| 1,3-dichloropropane           | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| Dibromochloromethane          | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | LCS-W1    | 109%       |
| 1,2-dibromoethane             | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| Tetrachloroethene             | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | LCS-W1    | 83%        |
| 1,1,1,2-tetrachloroethan<br>e | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| Chlorobenzene                 | μg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| Ethylbenzene                  | μg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| Bromoform                     | μg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| m+p-xylene                    | µg/L  | 2   | GC.13  | <2.0    | [NT]          | [NT]                       | [NR]      | [NR]       |
| Styrene                       | µg/L  | 1   | GC.13  | <1.0    | [NT]          | [NT]                       | [NR]      | [NR]       |

Envirolab Reference: 42964 **Revision No:** 

R 00



Page 13 of 19

71682, Cumberland Newspapers Redevelop

|                                          |       | Client Reference: 71682, Cumberland Newspapers Redevelop |        |       |               |                           |           |                     |  |  |  |  |  |  |
|------------------------------------------|-------|----------------------------------------------------------|--------|-------|---------------|---------------------------|-----------|---------------------|--|--|--|--|--|--|
| QUALITY CONTROL                          | UNITS | PQL                                                      | METHOD | Blank | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |  |  |  |  |  |  |
| VOCs in water                            |       |                                                          |        |       |               | Base II Duplicate II %RPD |           |                     |  |  |  |  |  |  |
| 1,1,2,2-tetrachloroethan<br>e            | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| o-xylene                                 | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| 1,2,3-trichloropropane                   | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| Isopropylbenzene                         | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| Bromobenzene                             | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| n-propyl benzene                         | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| 2-chlorotoluene                          | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| 4-chlorotoluene                          | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| 1,3,5-trimethyl benzene                  | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| Tert-butyl benzene                       | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| 1,2,4-trimethyl benzene                  | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| 1,3-dichlorobenzene                      | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| Sec-butyl benzene                        | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| 1,4-dichlorobenzene                      | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| 4-isopropyl toluene                      | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| 1,2-dichlorobenzene                      | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| n-butyl benzene                          | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| 1,2-dibromo-3-chloropro pane             | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| 1,2,4-trichlorobenzene                   | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| Hexachlorobutadiene                      | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| 1,2,3-trichlorobenzene                   | µg/L  | 1                                                        | GC.13  | <1.0  | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |  |
| <i>Surrogate</i><br>Dibromofluoromethane | %     |                                                          | GC.13  | 109   | [NT]          | [NT]                      | LCS-W1    | 118%                |  |  |  |  |  |  |
| Surrogate toluene-d8                     | %     |                                                          | GC.13  | 86    | [NT]          | [NT]                      | LCS-W1    | 86%                 |  |  |  |  |  |  |
| Surrogate 4-BFB                          | %     |                                                          | GC.13  | 102   | [NT]          | [NT]                      | LCS-W1    | 100%                |  |  |  |  |  |  |

ΝΑΤΑ ACCREDITED FOR TECHNICAL COMPETENCE

# Client Reference: 71682, Cumberland Newspapers Redevelop

| QUALITY CONTROL                          | UNITS | PQL | METHOD | Blank          | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
|------------------------------------------|-------|-----|--------|----------------|---------------|---------------------------|-----------|---------------------|
| vTPH & BTEX in Water                     |       |     |        |                |               | Base II Duplicate II %RPD |           |                     |
| Date extracted                           | -     |     |        | 08/07/2<br>010 | [NT]          | [NT]                      | LCS-W1    | 08/07/2010          |
| Date analysed                            | -     |     |        | 08/07/2<br>010 | [NT]          | [NT]                      | LCS-W1    | 08/07/2010          |
| TPH C6 - C9                              | µg/L  | 10  | GC.16  | <10            | [NT]          | [NT]                      | LCS-W1    | 108%                |
| Benzene                                  | µg/L  | 1   | GC.16  | <1.0           | [NT]          | [NT]                      | LCS-W1    | 98%                 |
| Toluene                                  | µg/L  | 1   | GC.16  | <1.0           | [NT]          | [NT]                      | LCS-W1    | 116%                |
| Ethylbenzene                             | µg/L  | 1   | GC.16  | <1.0           | [NT]          | [NT]                      | LCS-W1    | 108%                |
| m+p-xylene                               | µg/L  | 2   | GC.16  | <2.0           | [NT]          | [NT]                      | LCS-W1    | 109%                |
| o-xylene                                 | µg/L  | 1   | GC.16  | <1.0           | [NT]          | [NT]                      | LCS-W1    | 110%                |
| <i>Surrogate</i><br>Dibromofluoromethane | %     |     | GC.16  | 89             | [NT]          | [NT]                      | LCS-W1    | 98%                 |
| Surrogate toluene-d8                     | %     |     | GC.16  | 106            | [NT]          | [NT]                      | LCS-W1    | 109%                |
| Surrogate 4-BFB                          | %     |     | GC.16  | 102            | [NT]          | [NT]                      | LCS-W1    | 95%                 |

| QUALITY CONTROL          | UNITS | PQL | METHOD | Blank        | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
|--------------------------|-------|-----|--------|--------------|---------------|---------------------------|-----------|---------------------|
| sTPH in Water (C10-C36)  |       |     |        |              |               | Base II Duplicate II %RPD |           |                     |
| Date extracted           | -     |     |        | 6/7/201<br>0 | [NT]          | [NT]                      | LCS-W2    | 6/7/2010            |
| Date analysed            | -     |     |        | 6/7/201<br>0 | [NT]          | [NT]                      | LCS-W2    | 6/7/2010            |
| TPH C10 - C14            | µg/L  | 50  | GC.3   | <50          | [NT]          | [NT]                      | LCS-W2    | 80%                 |
| TPH C15 - C28            | µg/L  | 100 | GC.3   | <100         | [NT]          | [NT]                      | LCS-W2    | 119%                |
| TPH C29 - C36            | µg/L  | 100 | GC.3   | <100         | [NT]          | [NT]                      | LCS-W2    | 100%                |
| Surrogate<br>o-Terphenyl | %     |     | GC.3   | 100          | [NT]          | [NT]                      | LCS-W2    | 106%                |

| QUALITY CONTROL | UNITS | PQL | METHOD          | Blank          | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
|-----------------|-------|-----|-----------------|----------------|---------------|---------------------------|-----------|---------------------|
| PAHs in Water   |       |     |                 |                |               | Base II Duplicate II %RPD |           |                     |
| Date extracted  | -     |     |                 | 06/07/2<br>010 | [NT]          | [NT]                      | LCS-W2    | 06/07/2010          |
| Date analysed   | -     |     |                 | 07/07/2<br>010 | [NT]          | [NT]                      | LCS-W2    | 07/07/2010          |
| Naphthalene     | µg/L  | 1   | GC.12<br>subset | <1             | [NT]          | [NT]                      | LCS-W2    | 96%                 |
| Acenaphthylene  | µg/L  | 1   | GC.12<br>subset | <1             | [NT]          | [NT]                      | [NR]      | [NR]                |
| Acenaphthene    | µg/L  | 1   | GC.12<br>subset | <1             | [NT]          | [NT]                      | [NR]      | [NR]                |
| Fluorene        | µg/L  | 1   | GC.12<br>subset | <1             | [NT]          | [NT]                      | LCS-W2    | 111%                |
| Phenanthrene    | µg/L  | 1   | GC.12<br>subset | <1             | [NT]          | [NT]                      | LCS-W2    | 107%                |
| Anthracene      | µg/L  | 1   | GC.12<br>subset | <1             | [NT]          | [NT]                      | [NR]      | [NR]                |

42964 R 00



**Client Reference:** 

71682, Cumberland Newspapers Redevelop

| QUALITY CONTROL              | UNITS | PQL | METHOD          | Blank | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
|------------------------------|-------|-----|-----------------|-------|---------------|---------------------------|-----------|---------------------|
| PAHs in Water                |       |     |                 |       |               | Base II Duplicate II %RPD |           | -                   |
| Fluoranthene                 | µg/L  | 1   | GC.12<br>subset | <1    | [NT]          | [NT]                      | LCS-W2    | 102%                |
| Pyrene                       | µg/L  | 1   | GC.12<br>subset | <1    | [NT]          | [NT]                      | LCS-W2    | 109%                |
| Benzo(a)anthracene           | µg/L  | 1   | GC.12<br>subset | <1    | [NT]          | [NT]                      | [NR]      | [NR]                |
| Chrysene                     | µg/L  | 1   | GC.12<br>subset | <1    | [NT]          | [NT]                      | LCS-W2    | 112%                |
| Benzo(b+k)fluoranthene       | µg/L  | 2   | GC.12<br>subset | <2    | [NT]          | [NT]                      | [NR]      | [NR]                |
| Benzo(a)pyrene               | µg/L  | 1   | GC.12<br>subset | <1    | [NT]          | [NT]                      | LCS-W2    | 115%                |
| Indeno(1,2,3-c,d)pyrene      | µg/L  | 1   | GC.12<br>subset | <1    | [NT]          | [NT]                      | [NR]      | [NR]                |
| Dibenzo(a,h)anthracene       | µg/L  | 1   | GC.12<br>subset | <1    | [NT]          | [NT]                      | [NR]      | [NR]                |
| Benzo(g,h,i)perylene         | µg/L  | 1   | GC.12<br>subset | <1    | [NT]          | [NT]                      | [NR]      | [NR]                |
| Surrogate<br>p-Terphenyl-d14 | %     |     | GC.12<br>subset | 128   | [NT]          | [NT]                      | LCS-W2    | 137%                |

| QUALITY CONTROL     | UNITS | PQL | METHOD | Blank        | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recoverv |
|---------------------|-------|-----|--------|--------------|---------------|---------------------------|-----------|---------------------|
| OCP in water        |       |     |        |              |               | Base II Duplicate II %RPD |           |                     |
| Date extracted      | -     |     |        | 6/7/201<br>0 | [NT]          | [NT]                      | LCS-W1    | 6/7/2010            |
| Date analysed       | -     |     |        | 6/7/201<br>0 | [NT]          | [NT]                      | LCS-W1    | 6/7/2010            |
| НСВ                 | µg/L  | 0.2 | GC-5   | <0.2         | [NT]          | [NT]                      | [NR]      | [NR]                |
| alpha-BHC           | µg/L  | 0.2 | GC-5   | <0.2         | [NT]          | [NT]                      | LCS-W1    | 100%                |
| gamma-BHC           | µg/L  | 0.2 | GC-5   | <0.2         | [NT]          | [NT]                      | [NR]      | [NR]                |
| beta-BHC            | µg/L  | 0.2 | GC-5   | <0.2         | [NT]          | [NT]                      | LCS-W1    | 114%                |
| Heptachlor          | µg/L  | 0.2 | GC-5   | <0.2         | [NT]          | [NT]                      | LCS-W1    | 103%                |
| delta-BHC           | µg/L  | 0.2 | GC-5   | <0.2         | [NT]          | [NT]                      | [NR]      | [NR]                |
| Aldrin              | µg/L  | 0.2 | GC-5   | <0.2         | [NT]          | [NT]                      | LCS-W1    | 103%                |
| Heptachlor Epoxide  | µg/L  | 0.2 | GC-5   | <0.2         | [NT]          | [NT]                      | LCS-W1    | 115%                |
| gamma-Chlordane     | µg/L  | 0.2 | GC-5   | <0.2         | [NT]          | [NT]                      | [NR]      | [NR]                |
| alpha-Chlordane     | µg/L  | 0.2 | GC-5   | <0.2         | [NT]          | [NT]                      | [NR]      | [NR]                |
| Endosulfan I        | µg/L  | 0.2 | GC-5   | <0.2         | [NT]          | [NT]                      | [NR]      | [NR]                |
| pp-DDE              | µg/L  | 0.2 | GC-5   | <0.2         | [NT]          | [NT]                      | LCS-W1    | 121%                |
| Dieldrin            | µg/L  | 0.2 | GC-5   | <0.2         | [NT]          | [NT]                      | LCS-W1    | 105%                |
| Endrin              | µg/L  | 0.2 | GC-5   | <0.2         | [NT]          | [NT]                      | LCS-W1    | 112%                |
| pp-DDD              | µg/L  | 0.2 | GC-5   | <0.2         | [NT]          | [NT]                      | LCS-W1    | 113%                |
| Endosulfan II       | µg/L  | 0.2 | GC-5   | <0.2         | [NT]          | [NT]                      | [NR]      | [NR]                |
| pp-DDT              | µg/L  | 0.2 | GC-5   | <0.2         | [NT]          | [NT]                      | [NR]      | [NR]                |
| Endrin Aldehyde     | μg/L  | 0.2 | GC-5   | <0.2         | [NT]          | [NT]                      | [NR]      | [NR]                |
| Endosulfan Sulphate | µg/L  | 0.2 | GC-5   | <0.2         | [NT]          | [NT]                      | LCS-W1    | 107%                |

Envirolab Reference: Revision No: 42964 R 00



Page 16 of 19

|                        |       | Client Reference: 71682, Cumberland Newspapers Redevelop |        |              |               |                           |           |                     |  |  |  |  |  |
|------------------------|-------|----------------------------------------------------------|--------|--------------|---------------|---------------------------|-----------|---------------------|--|--|--|--|--|
| QUALITY CONTROL        | UNITS | PQL                                                      | METHOD | Blank        | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |  |  |  |  |  |
| OCP in water           |       |                                                          |        |              |               | Base II Duplicate II %RPD |           |                     |  |  |  |  |  |
| Methoxychlor           | µg/L  | 0.2                                                      | GC-5   | <0.2         | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |
| Surrogate TCLMX        | %     |                                                          | GC-5   | 118          | [NT]          | [NT]                      | LCS-W1    | 122%                |  |  |  |  |  |
| QUALITY CONTROL        | UNITS | PQL                                                      | METHOD | Blank        | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |  |  |  |  |  |
| OP Pesticides in water |       |                                                          |        |              |               | Base II Duplicate II %RPD |           |                     |  |  |  |  |  |
| Date extracted         | -     |                                                          |        | 6/7/201<br>0 | [NT]          | [NT]                      | LCS-W1    | 6/7/2010            |  |  |  |  |  |
| Date analysed          | -     |                                                          |        | 6/7/201<br>0 | [NT]          | [NT]                      | LCS-W1    | 6/7/2010            |  |  |  |  |  |
| Diazinon               | µg/L  | 0.2                                                      | GC.8   | <0.2         | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |
| Dimethoate             | µg/L  | 0.2                                                      | GC.8   | <0.2         | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |
| Chlorpyriphos-methyl   | µg/L  | 0.2                                                      | GC.8   | <0.2         | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |
| Ronnel                 | µg/L  | 0.2                                                      | GC.8   | <0.2         | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |
| Chlorpyriphos          | µg/L  | 0.2                                                      | GC.8   | <0.2         | [NT]          | [NT]                      | LCS-W1    | 100%                |  |  |  |  |  |
| Fenitrothion           | µg/L  | 0.2                                                      | GC.8   | <0.2         | [NT]          | [NT]                      | LCS-W1    | 124%                |  |  |  |  |  |
| Bromophos ethyl        | µg/L  | 0.2                                                      | GC.8   | <0.2         | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |
| Ethion                 | µg/L  | 0.2                                                      | GC.8   | <0.2         | [NT]          | [NT]                      | LCS-W1    | 98%                 |  |  |  |  |  |
| Surrogate TCLMX        | %     |                                                          | GC.8   | 118          | [NT]          | [NT]                      | LCS-W1    | 111%                |  |  |  |  |  |
| QUALITY CONTROL        | UNITS | PQL                                                      | METHOD | Blank        | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |  |  |  |  |  |
| PCBs in Water          |       |                                                          |        |              |               | Base II Duplicate II %RPD |           |                     |  |  |  |  |  |
| Date extracted         | -     |                                                          |        | 6/7/201<br>0 | [NT]          | [NT]                      | LCS-W1    | 6/7/2010            |  |  |  |  |  |
| Date analysed          | -     |                                                          |        | 6/7/201<br>0 | [NT]          | [NT]                      | LCS-W1    | 6/7/2010            |  |  |  |  |  |
| Arochlor 1016          | µg/L  | 2                                                        | GC-6   | <2           | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |
| Arochlor 1221*         | µg/L  | 2                                                        | GC-6   | <2           | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |
| Arochlor 1232          | µg/L  | 2                                                        | GC-6   | <2           | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |
| Arochlor 1242          | µg/L  | 2                                                        | GC-6   | <2           | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |
| Arochlor 1248          | µg/L  | 2                                                        | GC-6   | <2           | [NT]          | [NT]                      | [NR]      | [NR]                |  |  |  |  |  |
| Arochlor 1254          | µg/L  | 2                                                        | GC-6   | <2           | [NT]          | [NT]                      | LCS-W1    | 104%                |  |  |  |  |  |

Arochlor 1260

Surrogate TCLMX

2

µg/L

%

GC-6

GC-6

<2

118



[NT]

[NT]

[NT]

[NT]

[NR]

LCS-W1

[NR]

136%

# Client Reference: 71682, Cumberland Newspapers Redevelop

| QUALITY CONTROL                | UNITS | PQL  | METHOD | Blank        | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %  |
|--------------------------------|-------|------|--------|--------------|---------------|---------------------------|-----------|----------|
|                                |       |      |        |              |               |                           |           | Recovery |
| Total Phenolics in Water       |       |      |        |              |               | Base II Duplicate II %RPD |           |          |
| Date extracted                 | -     |      |        | 6/7/201<br>0 | [NT]          | [NT]                      | LCS-W1    | 6/7/2010 |
| Date analysed                  | -     |      |        | 6/7/201<br>0 | [NT]          | [NT]                      | LCS-W1    | 6/7/2010 |
| Total Phenolics (as<br>Phenol) | mg/L  | 0.05 | LAB.30 | <0.050       | [NT]          | [NT]                      | LCS-W1    | 85%      |

| QUALITY CONTROL         | UNITS | PQL | METHOD              | Blank          | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
|-------------------------|-------|-----|---------------------|----------------|---------------|---------------------------|-----------|---------------------|
| HM in water - dissolved |       |     |                     |                |               | Base II Duplicate II %RPD |           |                     |
| Date prepared           | -     |     |                     | 08/07/2<br>010 | [NT]          | [NT]                      | LCS-W2    | 08/07/2010          |
| Date analysed           | -     |     |                     | 09/07/2<br>010 | [NT]          | [NT]                      | LCS-W2    | 09/07/2010          |
| Arsenic-Dissolved       | µg/L  | 1   | Metals.22<br>ICP-MS | <1             | [NT]          | [NT]                      | LCS-W2    | 104%                |
| Cadmium-Dissolved       | µg/L  | 0.1 | Metals.22<br>ICP-MS | <0.1           | [NT]          | [NT]                      | LCS-W2    | 103%                |
| Chromium-Dissolved      | µg/L  | 1   | Metals.22<br>ICP-MS | <1             | [NT]          | [NT]                      | LCS-W2    | 99%                 |
| Copper-Dissolved        | µg/L  | 1   | Metals.22<br>ICP-MS | <1             | [NT]          | [NT]                      | LCS-W2    | 96%                 |
| Lead-Dissolved          | µg/L  | 1   | Metals.22<br>ICP-MS | <1             | [NT]          | [NT]                      | LCS-W2    | 100%                |
| Mercury-Dissolved       | µg/L  | 0.5 | Metals.21<br>CV-AAS | <0.5           | [NT]          | [NT]                      | LCS-W2    | 106%                |
| Nickel-Dissolved        | µg/L  | 1   | Metals.22<br>ICP-MS | <1             | [NT]          | [NT]                      | LCS-W2    | 96%                 |
| Zinc-Dissolved          | µg/L  | 1   | Metals.22<br>ICP-MS | <1             | [NT]          | [NT]                      | LCS-W2    | 102%                |

ACCREDITED FOR TECHNICAL COMPETENCE

# **Report Comments:**

VOC in waters: PQL has been raised due to the sample matrix requiring dilution.

Total Petroleum Hydrocarbons in water: PQL has been raised due to the sample matrix requiring dilution. Asbestos was analysed by Approved Identifier: Not applicable for this job Asbestos was authorised by Approved Signatory: Not applicable for this job INS: Insufficient sample for this test NT: Not tested PQL: Practical Quantitation Limit <: Less than >: Greater than **RPD: Relative Percent Difference** NA: Test not required LCS: Laboratory Control Sample NR: Not requested

# **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents,

glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample

selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

# Laboratory Acceptance Criteria:

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

Envirolab Reference: Revision No:

42964 R 00





Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

# SAMPLE RECEIPT ADVICE

| Client:                                                 |                                        |
|---------------------------------------------------------|----------------------------------------|
| Douglas Partners                                        | ph: 02 9809 0666                       |
| 96 Hermitage Rd                                         | Fax: 02 9809 4095                      |
| West Ryde NSW 2114                                      |                                        |
| Attention: Peter Oitmaa                                 |                                        |
| Sample log in details:                                  |                                        |
| Your reference:                                         | 71682, Cumberland Newspapers Redevelop |
| Envirolab Reference:                                    | 42964                                  |
| Date received:                                          | 02/07/10                               |
| Date results expected to be reported:                   | 9/07/10                                |
|                                                         |                                        |
| Samples received in appropriate condition for analysis: | YES                                    |

| Samples received in appropriate condition for analysis: | YES      |
|---------------------------------------------------------|----------|
| No. of samples provided                                 | 3 Waters |
| Turnaround time requested:                              | Standard |
| Temperature on receipt                                  | Cool     |
| Cooling Method:                                         | Ice Pack |

# Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

# Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au

| Sample Sample Lab Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Depth ID Dep                                                                                                                                                                                                                                                                                                                                                                                                                                                               | المتالية المتالية المتالية المتالية المتالية المتالية المتالية المتالية المتالية المتالية المتالية المتالية الم<br>ail: المتالية المتالية المتالية المتالية المتالية المتالية المتالية المتالية المتالية المتالية المتالية المتالية<br>e Required: المتالية المتالية المتالية المتالية المتالية المتالية المتالية المتالية المتالية المتالية المتالية ا | maa@dou<br>لا <sup>1</sup> دريي | Runs pur RCS.<br>Sampler: .<br>Mob. Phoi<br>uglaspartners<br>Aranned. Lat |                                                              | quant<br>4 518                  |                    | Ĕ           | : Envir<br>12 As<br>Attn:<br>Phon<br>Emai | olab Servi<br>shley Stre<br>Tania No<br>e: 02 991<br>ti tnotaras | ces<br>et, Chatswo<br>taras<br>0 6200 F<br>@envirolab | od NSW<br><sup>-</sup> ax: 02 991(<br>services.cor  | 2067<br>0 6201<br>n.au             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------|--------------------|-------------|-------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|------------------------------------|
| Sample Sample Lab<br>Depth ID<br>Sample Sample Lab<br>Sampline<br>(As, Cd, TPH<br>Sampline<br>(As, Cd, TPH<br>Chi HQ<br>PD, FGB<br>PD, FGL<br>PD, FGL<br>PD, FGL<br>PD, FGL<br>PD, FGL<br>PD, FGL<br>PD, FGB<br>PD, FGL<br>PD, FGB<br>PD, FGL<br>PD, FGB<br>PD, FGL<br>PD, FGB<br>PD, FGL<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB<br>PD, FGB | -                                                                                                                                                                                                                                                                                                                                                       | Samp                            |                                                                           |                                                              |                                 |                    | A           | nalytes                                   |                                                                  |                                                       |                                                     |                                    |
| C(W4       -       I       2/1       W       Monets       V         CLWS       -       2       1       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sampling<br>Sampling                                                                                                                                                                                                                                                                                                                                    | S - soil<br>W - water           | Container<br>type                                                         | <b>8 Metals</b><br>(As, Cd,<br>Cr, Cu,<br>Pb, Hg,<br>Zn, Ni) | втех/<br>трн                    | PAH/               | OCP/<br>OPP | PCB                                       | Phenols                                                          | VOC                                                   | <b>TOLT</b><br>(Metals/<br>PAH)                     | Notes                              |
| Luns       2       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th=""> <th1< th=""></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 - 1 21                                                                                                                                                                                                                                                                                                                                                | <u>、</u>                        | / Norms                                                                   |                                                              | >                               |                    |             |                                           |                                                                  | >                                                     |                                                     | Ploare AYB                         |
| RUN54     -     2     1     1     1     1       Run54     -     2     1     1     1     1     1       Run54     -     2     1     1     1     1     1       Run54     -     2     1     1     1     1     1       Run54     -     1     1     1     1     1     1       Run54     -     1     1     1     1     1     1       Run54     -     1     1     1     1     1     1       Run54     -     1     1     1     1     1     1       Run54     -     1     1     1     1     1     1       Run44     -     1     1     1     1     1     1       Run44     -     1     1     1     1     1     1       Run44     -     1     1     1     1     1     1       Run44     -     1     1     1     1     1     1       Run44     -     1     1     1     1     1     1       Run44     -     -     1     1     1     1 <td>5 - 2 1</td> <td></td> <td></td> <td></td> <td>&gt;</td> <td>&gt;</td> <td>&gt;</td> <td>&gt;</td> <td>&gt;</td> <td>&gt;</td> <td></td> <td>ALLAR KSO 6</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 - 2 1                                                                                                                                                                                                                                                                                                                                                 |                                 |                                                                           |                                                              | >                               | >                  | >           | >                                         | >                                                                | >                                                     |                                                     | ALLAR KSO 6                        |
| Lab Report No.       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Douglas Partners       Bit Results to:       Bit Results to:       Bit Results to:       Bit Results to:       Bit Results to:       Bit Results to:       Bit Results to:       Bit Results to:       Bit Results to:       Bit Results to:       Bit Results to:       Bit Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 - 3                                                                                                                                                                                                                                                                                                                                                   |                                 |                                                                           |                                                              | >                               | >                  |             |                                           |                                                                  |                                                       |                                                     |                                    |
| Lab Report No.     Phone:     October       Send Results to:     Douglas Partners     Address:     96 Hermitage Road West Rvde 2114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                         |                                 |                                                                           |                                                              |                                 |                    |             |                                           |                                                                  |                                                       |                                                     |                                    |
| Lab Report No.     Phone:     (02) 9809 0666       Send Results to:     Douglas Partners     36 Hermitage Road West Rvde 2114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                         |                                 |                                                                           |                                                              |                                 |                    |             |                                           |                                                                  |                                                       | ĺ                                                   |                                    |
| Lab Report No.       Provided (12)       Provided (12)       Provided (12)       Provided (12)         Lab Report No.       Douglas Partners       36 Hermitade Road West Rvde 2114       Phone:       (02) 9809 0666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                         |                                 | -                                                                         |                                                              |                                 |                    |             |                                           |                                                                  |                                                       | (Environal)                                         | Envirolab Bervices<br>12 Aahley Bi |
| Lab Report No.         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence         Continuence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                         |                                 |                                                                           |                                                              |                                 |                    |             |                                           |                                                                  |                                                       | 3                                                   | Ph: 9910 6200                      |
| Lab Report No.       Phone:       Oddlass       Security: Fusic Factor       Data Andress:       Security: Fusic Factor         Security: Fusic Factor       Security: Fusic Factor       Security: Fusic Factor       Security: Fusic Factor       Security: Fusic Factor       Security: Fusic Factor         Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       Security: Factor       S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                         |                                 |                                                                           |                                                              |                                 | <u> -</u>          |             |                                           |                                                                  |                                                       | ( <b>Ob No;</b><br>Data receivert:                  | 011/2/                             |
| Lab Report No.         Phone:         9609 0666           Seauthy March 114         Phone:         (02) 9809 0666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                         |                                 |                                                                           |                                                              |                                 |                    |             |                                           |                                                                  |                                                       | Time received:<br>Received by:                      | tom.                               |
| Lab Report No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                         |                                 |                                                                           |                                                              |                                 |                    |             |                                           |                                                                  |                                                       | Temp: CoolAn<br>Cooling: fcerter<br>Security: Atact | Dent<br>Dack<br>Proken/None        |
| Send Results to: Douglas Partners Address: 96 Hermitage Road. West Ryde 2114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eport No.                                                                                                                                                                                                                                                                                                                                               |                                 | _                                                                         |                                                              |                                 |                    |             |                                           |                                                                  | Phone:                                                | (02) 9809 06                                        | 566                                |
| Relinquished by: $P_{MO} \left[ 2 \right] + I_{O}$ Signed: $D_{MO} \left[ 0 \right]$ Date & Time: $2 \left[ \frac{2}{7} \right] / D_{12ac} L_{e}$ Received By: $-7 I_{e}$ Date & Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vesults to: Douglas Partr<br>lished by: PMO 2 7 / f                                                                                                                                                                                                                                                                                                     | iers Add                        | dress; 96 He                                                              | rmitage Roa                                                  | <u>1, West Ry</u><br>Date & Tim | de 2114<br>ie: ンプイ | 11 ad       | Le Receiv                                 | P :VB pe                                                         | Fax:                                                  | (02) 9809 4(<br>Date & 7                            | 195<br>Time: 2/1/10 /Low           |
| Relinquished by: Signed: Date & Time: Received By: Date & Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lished by:                                                                                                                                                                                                                                                                                                                                              | Signe                           | d:<br>b                                                                   |                                                              | Date & Tin                      | le:                |             | Receiv                                    | ed By:                                                           | •                                                     | Date & T                                            | lime:                              |



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

# CERTIFICATE OF ANALYSIS 42964-A

<u>Client:</u> Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Peter Oitmaa

# Sample log in details:

Your Reference: No. of samples: Date samples received: Date completed instructions received:

# 71682, Cumberland Newspapers Redevelop

Additional Testing on 1 Water 02/07/10 14/07/10

# Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.* 

# **Report Details:**

 Date results requested by:
 15/07/10

 Date of Preliminary Report:
 Not Issued

 Issue Date:
 15/07/10

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 This document is issued in accordance with NATA's accreditation requirements.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with \*.

**Results Approved By:** 

Jacinta/Hurst Laboratory Manager

Envirolab Reference: Revision No:



| Miscellaneous Inorganics |               |            |
|--------------------------|---------------|------------|
| Our Reference:           | UNITS         | 42964-A-2  |
| Your Reference           |               | GW5        |
| Date Sampled             |               | 2/07/2010  |
| Type of sample           |               | Water      |
| Date prepared            | -             | 15/07/2010 |
| Date analysed            | -             | 15/07/2010 |
| Calcium - Dissolved      | mg/L          | 29         |
| Magnesium - Dissolved    | mg/L          | 16         |
| Hardness                 | mgCaCO3<br>/L | 139        |



| Method ID            | Methodology Summary                         |
|----------------------|---------------------------------------------|
| Metals.20<br>ICP-AES | Determination of various metals by ICP-AES. |

Envirolab Reference: 429 Revision No: R (



# Client Reference: 71682, Cumberland Newspapers Redevelop

| QUALITY CONTROL          | UNITS             | PQL  | METHOD               | Blank          | Duplicate Sm# | Duplicate results         | Spike Sm# | Spike %<br>Recovery |
|--------------------------|-------------------|------|----------------------|----------------|---------------|---------------------------|-----------|---------------------|
| Miscellaneous Inorganics |                   |      |                      |                |               | Base II Duplicate II %RPD |           |                     |
| Date prepared            | -                 |      |                      | 15/07/2<br>010 | 42964-A-2     | 15/07/2010    15/07/2010  | LCS-W1    | 15/07/2010          |
| Date analysed            | -                 |      |                      | 15/07/2<br>010 | 42964-A-2     | 15/07/2010    15/07/2010  | LCS-W1    | 15/07/2010          |
| Calcium - Dissolved      | mg/L              | 0.03 | Metals.20<br>ICP-AES | <0.03          | 42964-A-2     | 29    27    RPD: 7        | LCS-W1    | 101%                |
| Magnesium - Dissolved    | mg/L              | 0.03 | Metals.20<br>ICP-AES | <0.03          | 42964-A-2     | 16    14    RPD: 13       | LCS-W1    | 100%                |
| Hardness                 | mgCaCO<br>3/<br>L | 1    |                      | [NT]           | 42964-A-2     | 139    125    RPD: 11     | [NR]      | [NR]                |

ACCREDITED FOR TECHNICAL COMPETENCE

# Report Comments:

 Asbestos was analysed by Approved Identifier:
 Not applicable for this job

 Asbestos was authorised by Approved Signatory:
 Not applicable for this job

 INS: Insufficient sample for this test
 NT: Not tested
 PQL: Practical Quantitation Limit
 <: Less than</td>
 >: Greater than

 RPD: Relative Percent Difference
 NA: Test not required
 LCS: Laboratory Control Sample
 NR: Not requested

# **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike**: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

# Laboratory Acceptance Criteria:

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for

Envirolab Reference: 429 Revision No: R (



|                                                   | eotechnics - Envir                   | oument - Ero |                                      |                                       |                                         |                                                                  |                           |                              |             |                                 |                                                                            |                                                       | Ċ                                       | AIN OF CUST            |
|---------------------------------------------------|--------------------------------------|--------------|--------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------------------------------|---------------------------|------------------------------|-------------|---------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------|------------------------|
| Project<br>Project<br>Project<br>Email:<br>Date R | : Name:<br>: No:<br>Mgr:<br>equired: | Bet          | Par<br>7168.<br>er Oitma<br>er oitma | 2<br>2<br>aa<br>24 fr + (             | A<br>Sampler:<br>Mob. Pho<br>aspartners | <i>РВ</i> .<br>ne: 0412 5 <sup>7</sup><br>s.com.au<br>b Quote No | 74 518                    |                              |             | To:<br>12,<br>Attr<br>Phc<br>Em | virolab Serv<br>Ashley Stre<br>1: Tania Nu<br>nne: 02 991<br>ail: tnotara: | /ices<br>et, Chatsw<br>otaras<br>0 6200<br>s@envirola | /ood NSW<br>Fax: 02 99'<br>bservices.cc | 2067<br>2 6201<br>m.au |
| Sample<br>ID                                      | Sample<br>Depth                      | Lab          | Sampling<br>Date                     | soil S<br>Marrier Jype<br>W – Water P | Container<br>type                       | 8 Metals<br>(As, Cd,<br>Cr, Cu,<br>Pb, Hg,<br>Zn, Ni)            | ВТЕХ/<br>ТРН              | РАН                          | 0CP/<br>0PP | Analytes                        | Phenols                                                                    | Hardre                                                | TCLP<br>کد (Metals/<br>PAH)             | Notes                  |
| QW4                                               | 4/2                                  |              | 12 7                                 | 3                                     | <u>J</u> ar                             |                                                                  |                           |                              |             |                                 |                                                                            |                                                       |                                         | Sample reed            |
| aws                                               |                                      | N            | Ξ                                    | =                                     |                                         |                                                                  |                           |                              |             |                                 |                                                                            |                                                       |                                         | +>HENNG                |
| the put                                           |                                      |              |                                      |                                       |                                         |                                                                  |                           |                              |             |                                 |                                                                            | Envirol                                               | ib Sarvices<br>? Ashiey St              |                        |
| - nt 24                                           |                                      |              |                                      |                                       |                                         |                                                                  | 0 of 7                    | 1296                         | 44          |                                 |                                                                            | No: (13)                                              | 1 NSW 2067                              |                        |
| •                                                 |                                      |              |                                      |                                       |                                         |                                                                  | - Tien                    | 217                          | 0           |                                 | Time I<br>Time I<br>Received                                               | eceived: / //                                         | e l                                     |                        |
|                                                   |                                      |              |                                      |                                       |                                         |                                                                  |                           | 24M                          | <b>₩</b>    |                                 | (Secur                                                                     | IN: MOCUERONEN                                        |                                         |                        |
| Lab Repor                                         | t No.                                |              |                                      |                                       |                                         |                                                                  |                           |                              |             |                                 |                                                                            | Phone                                                 | (02) 9809 (                             | 1666                   |
| Relinquishe                                       | d by: PA                             | A D          | raimer                               | s Addre<br>Signed:                    |                                         | rrmitage Koa                                                     | .d, West R)<br>Date & Tir | /de 2114<br>ne: / <b>4</b> / | 7 1406      | JL Rece                         | ived By: (1)                                                               | <u>р Fax:</u><br>2014 2 7 дли                         | (02) 9809 4<br>Date &                   | 1095<br>Time: / U/~/// |
| Relinquishe                                       | id by:                               |              |                                      | Signed:                               |                                         |                                                                  | Date & Tir                |                              |             | Rene                            | ived Rv.                                                                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                 | Date &                                  | Time.                  |

Form COC Rev0/November 2006

.

1



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

# CERTIFICATE OF ANALYSIS 43532

<u>Client:</u> Douglas Partners 96 Hermitage Rd West Ryde NSW 2114

Attention: Peter Oitmaa

# Sample log in details:

Your Reference:71682, ParramattaNo. of samples:1 WaterDate samples received:15/07/10Date completed instructions received:15/07/10

# Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.* 

# **Report Details:**

 Date results requested by:
 16/07/10

 Date of Preliminary Report:
 Not issued

 Issue Date:
 16/07/10

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 This document is issued in accordance with NATA's accreditation requirements.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with \*.

**Results Approved By:** 

Kluign Morgen

Rhian Morgan Metals Supervisor

Jacinta/Hurst Laboratory Manager

Envirolab Reference: 43 Revision No: R

43532 R 00



# Client Reference: 71682, Parramatta

| HM in water - dissolved |       |            |
|-------------------------|-------|------------|
| Our Reference:          | UNITS | 43532-1    |
| Your Reference          |       | GW4        |
| Date Sampled            |       | 15/07/2010 |
| Type of sample          |       | Water      |
| Date prepared           | -     | 16/07/2010 |
| Date analysed           | -     | 16/07/2010 |
| Arsenic-Dissolved       | µg/L  | <1         |
| Cadmium-Dissolved       | µg/L  | 0.1        |
| Chromium-Dissolved      | µg/L  | <1         |
| Copper-Dissolved        | µg/L  | 2          |
| Lead-Dissolved          | µg/L  | <1         |
| Mercury-Dissolved       | µg/L  | <0.5       |
| Nickel-Dissolved        | µg/L  | 4          |
| Zinc-Dissolved          | µg/L  | 27         |



# Client Reference: 71682, Parramatta

| Miscellaneous Inorganics |         |            |
|--------------------------|---------|------------|
| Our Reference:           | UNITS   | 43532-1    |
| Your Reference           |         | GW4        |
| Date Sampled             |         | 15/07/2010 |
| Type of sample           |         | Water      |
| Date prepared            | -       | 16/07/2010 |
| Date analysed            | -       | 16/07/2010 |
| Hardness                 | mgCaCO3 | 370        |
|                          | /L      |            |
| Calcium - Dissolved      | mg/L    | 100        |
| Magnesium - Dissolved    | mg/L    | 28         |



# Client Reference: 71682, Parramatta

| Method ID            | Methodology Summary                          |
|----------------------|----------------------------------------------|
| Metals.22<br>ICP-MS  | Determination of various metals by ICP-MS.   |
| Metals.21<br>CV-AAS  | Determination of Mercury by Cold Vapour AAS. |
| Metals.20<br>ICP-AES | Determination of various metals by ICP-AES.  |

ACCREDITED FOR TECHNICAL COMPETENCE

#### **Client Reference:** 71682, Parramatta

| QUALITY CONTROL          | UNITS             | PQL  | METHOD               | Blank          | Duplicate Sm#     | Duplicate results         | Spike Sm#    | Spike %<br>Recovery |
|--------------------------|-------------------|------|----------------------|----------------|-------------------|---------------------------|--------------|---------------------|
| HM in water - dissolved  |                   |      |                      |                |                   | Base II Duplicate II %RPD |              | -                   |
| Date prepared            | -                 |      |                      | 16/07/2<br>010 | [NT]              | [NT]                      | LCS-W1       | 16/07/2010          |
| Date analysed            | -                 |      |                      | 16/07/2<br>010 | [NT]              | [NT]                      | LCS-W1       | 16/07/2010          |
| Arsenic-Dissolved        | µg/L              | 1    | Metals.22<br>ICP-MS  | <1             | [NT]              | [NT]                      | LCS-W1       | 100%                |
| Cadmium-Dissolved        | µg/L              | 0.1  | Metals.22<br>ICP-MS  | <0.1           | [NT]              | [NT]                      | LCS-W1       | 100%                |
| Chromium-Dissolved       | µg/L              | 1    | Metals.22<br>ICP-MS  | <1             | [NT]              | [NT]                      | LCS-W1       | 102%                |
| Copper-Dissolved         | µg/L              | 1    | Metals.22<br>ICP-MS  | <1             | [NT]              | [NT]                      | LCS-W1       | 106%                |
| Lead-Dissolved           | µg/L              | 1    | Metals.22<br>ICP-MS  | <1             | [NT]              | [NT]                      | LCS-W1       | 102%                |
| Mercury-Dissolved        | µg/L              | 0.5  | Metals.21<br>CV-AAS  | <0.5           | [NT]              | [NT]                      | LCS-W1       | 103%                |
| Nickel-Dissolved         | µg/L              | 1    | Metals.22<br>ICP-MS  | <1             | [NT]              | [NT]                      | LCS-W1       | 106%                |
| Zinc-Dissolved           | µg/L              | 1    | Metals.22<br>ICP-MS  | <1             | [NT]              | [NT]                      | LCS-W1       | 100%                |
|                          |                   | DOL  | METHOD               | Disale         | Duralizata Ora // | Duralizate esculta        | Omites One # | Orailea Or          |
| QUALITY CONTROL          | UNITS             | PQL  | METHOD               | ыапк           | Duplicate Sm#     | Duplicate results         | Spike Sm#    | Spike %<br>Recovery |
| Miscellaneous Inorganics |                   |      |                      |                |                   | Base II Duplicate II %RPD |              |                     |
| Date prepared            | -                 |      |                      | 16/07/2<br>010 | [NT]              | [NT]                      | LCS-W1       | 16/07/2010          |
| Date analysed            | -                 |      |                      | 16/07/2<br>010 | [NT]              | [NT]                      | LCS-W1       | 16/07/2010          |
| Hardness                 | mgCaCO<br>3/<br>L | 1    |                      | <1             | [NT]              | [NT]                      | [NR]         | [NR]                |
| Calcium - Dissolved      | mg/L              | 0.03 | Metals.20<br>ICP-AES | <0.03          | [NT]              | [NT]                      | LCS-W1       | 97%                 |
| Magnesium - Dissolved    | mg/L              | 0.03 | Metals.20<br>ICP-AES | <0.03          | [NT]              | [NT]                      | LCS-W1       | 98%                 |

43532



# **Report Comments:**

Asbestos was analysed by Approved Identifier: Not applicable for this job Asbestos was authorised by Approved Signatory: Not applicable for this job INS: Insufficient sample for this test PQL: Practical Quantitation Limit NT: Not tested <: Less than >: Greater than **RPD: Relative Percent Difference** NA: Test not required LCS: Laboratory Control Sample NR: Not requested

# **Quality Control Definitions**

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. Duplicate: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike: A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample): This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

# Laboratory Acceptance Criteria:

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the sample batch were within laboratory acceptance criteria.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes and LCS: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for

SVOC and speciated phenols is acceptable. Surrogates: 60-140% is acceptable for general organics and 10-140% for





Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

# SAMPLE RECEIPT ADVICE

| Client:                                                 |                   |  |  |  |
|---------------------------------------------------------|-------------------|--|--|--|
| Douglas Partners                                        | ph: 02 9809 0666  |  |  |  |
| 96 Hermitage Rd                                         | Fax: 02 9809 4095 |  |  |  |
| West Ryde NSW 2114                                      |                   |  |  |  |
| Attention: Peter Oitmaa                                 |                   |  |  |  |
| Sample log in details:                                  |                   |  |  |  |
| Your reference:                                         | 71682, Parramatta |  |  |  |
| Envirolab Reference:                                    | 43532             |  |  |  |
| Date received:                                          | 15/07/10          |  |  |  |
| Date results expected to be reported:                   | 16/07/10          |  |  |  |
|                                                         |                   |  |  |  |
| Samples received in appropriate condition for analysis: | YES               |  |  |  |

| Samples received in appropriate condition for analysis: | YES     |
|---------------------------------------------------------|---------|
| No. of samples provided                                 | 1 Water |
| Turnaround time requested:                              | 24hr    |
| Temperature on receipt                                  | Cool    |
| Cooling Method:                                         | Ice     |

# Comments:

Samples will be held for 1 month for water samples and 2 months for soil samples from date of receipt of samples.

# Contact details:

Please direct any queries to Aileen Hie or Jacinta Hurst ph: 02 9910 6200 fax: 02 9910 6201 email: ahie@envirolabservices.com.au or jhurst@envirolabservices.com.au
| λα                | Services<br>Services<br>Ashley Si<br>ISW 2067<br>1910 6200                                               | -                 | 2                                                                                 |            | a.           |  | T | <b>T</b> |   |  |   |   | <br>]       |             |                      | <u> </u>            |
|-------------------|----------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------|------------|--------------|--|---|----------|---|--|---|---|-------------|-------------|----------------------|---------------------|
| AIN OF CUSTC      | 2067 Envirolab<br>(111/1012) Envirolab<br>12,1<br>13,12<br>13,12<br>13,12<br>14,3532<br>11,315/15/15/100 | Time received: 30 | Termp: Cabill Arminient<br>Cooling: He McBipSig<br>To curity: Ingge Hitriene MMBI | PHORE A HE | Sauple in la |  |   |          |   |  |   |   | 566         | <u> </u>    | En16/51 :15/1        | Time:               |
| CH                | d NSW<br>ax: 02 991(                                                                                     |                   | <b>TCLP</b><br>(Metals/<br>PAH)                                                   | ,<br>,     |              |  |   | -        |   |  |   |   | 02) 9809 06 | 02) 9809 4( | Date &               | Date & <sup>-</sup> |
|                   | es<br>t, Chatswoo<br>aras<br>6200 Fa<br>@envirolabse                                                     |                   | Hardness                                                                          | >          |              |  |   |          |   |  |   | - | Phone: (    | Fax: (      | <i>Z</i><br><i>S</i> |                     |
|                   | irolab Servic<br>shley Stree<br>: Tania Noti<br>ne: 02 9910<br>iil: tnotaras(                            |                   | Phenois                                                                           |            |              |  |   |          |   |  |   |   |             |             | ved By: 🔥            | ved By: 77          |
|                   | To: Envi<br>12 A<br>Attn<br>Pho                                                                          | Analytes          | PCB                                                                               |            |              |  |   |          | - |  |   |   |             |             | has Recei            | Recei               |
|                   |                                                                                                          |                   | 0CP/<br>0PP                                                                       |            |              |  |   |          |   |  |   |   |             |             | H ISa                |                     |
|                   |                                                                                                          |                   | РАН                                                                               |            |              |  |   |          |   |  |   |   |             | /de 2114    | ne: וצ               | ne:                 |
|                   | 1518                                                                                                     |                   | BTEX/<br>TPH                                                                      |            |              |  |   |          |   |  | - |   |             | , West Ry   | Date & Tir           | Date & Tir          |
| -                 | <b>6.6</b><br>e: 0412 574<br>com.au<br>Quote No.                                                         |                   | <b>8 Metals</b><br>(As, Cd,<br>Cr, Cu,<br>Pb, Hg,<br>Zn, Ni)                      |            |              |  |   |          |   |  |   |   |             | nitage Road |                      |                     |
|                   | Sampler:<br>Mob. Phon<br>aspartners.<br>Lab                                                              |                   | Container<br>type                                                                 | Bottle     |              |  |   |          |   |  |   |   |             | ss: 96 Heri | <b>W</b>             |                     |
|                   | 2<br>2<br>a@dougl                                                                                        | Sample<br>Type    | S - soil<br>W - water                                                             | 3          |              |  |   |          |   |  |   |   |             | Addre:      | Signed:              | Signed:             |
| ndwater           | 7/68:<br>er Oitma<br>er oitma                                                                            |                   | Sampling<br>Date                                                                  | 15/7       |              |  |   |          |   |  |   |   |             | Partners    |                      |                     |
| ronment - Grov    | No G                                                                                                     |                   | Lab<br>ID                                                                         |            |              |  |   |          |   |  |   |   |             | ouglas      | 2<br>2               |                     |
| otechnics - Envir | Name:<br>No:<br>Mgr:<br>equired:                                                                         | <del></del>       | Sample<br>Depth                                                                   | N/#        |              |  |   |          |   |  |   |   | t No.       | ults to: D  | d by:                | d by:               |
| <sup>8</sup>      | Project<br>Project<br>Email:<br>Date Rŧ                                                                  |                   | Sample                                                                            | 6U4        |              |  |   |          |   |  | , |   | Lab Repor   | Send Resu   | Relinquìshe          | Relinquishe         |

Form COC Rev0/November 2006

đ Page\_\_\_\_

# APPENDIX F QA/QC Information



## QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES AND RESULTS

## FIELD QA/QC

The field QA/QC procedures for sampling described in the Douglas Partners *Field Procedures Manual* were followed at all times during the field work. Field QA/QC included the collection of duplicate and rinsate samples, and use of laboratory prepared trip blank and trip spike samples. Details of the field QA/QC results are provided below.

### Trip Blank

A soil trip blank prepared by Envirolab Services Pty Ltd was transported to site unopened, subjected to the same storage methods as the field samples and analysed for BTEX, TPH and PAH to determine whether transfer of contaminants occurred within the storage container.

The results of the laboratory analysis for the trip blank are shown in Tables F1 and F2.

| Sample ID  | Matrix |         | Total Concentrations (mg/kg) |              |            |          |  |  |  |  |
|------------|--------|---------|------------------------------|--------------|------------|----------|--|--|--|--|
| Gampie ib  |        | Benzene | Toluene                      | Ethylbenzene | m+p xylene | o xylene |  |  |  |  |
| 28/05/2010 | Soil   | <0.5    | <0.5                         | <1.0         | <2.0       | <1.0     |  |  |  |  |

Table F1 – Results of Trip Blank Analysis

| Table F2 – Results of Trip | Blank Analysis |
|----------------------------|----------------|
|----------------------------|----------------|

| Sample ID  | Matrix | Total Concentrations (mg/kg) |                   |                   |                   |            |  |  |  |
|------------|--------|------------------------------|-------------------|-------------------|-------------------|------------|--|--|--|
| Campie ib  |        | $C_{6} - C_{9}$              | $C_{10} - C_{14}$ | $C_{15} - C_{28}$ | $C_{29} - C_{36}$ | Total PAHs |  |  |  |
| 28/05/2010 | Soil   | <25                          | <50               | <100              | <100              | <0.2       |  |  |  |

The levels of the analytes were all below the detection limits indicating that crosscontamination had not occurred during the field work programme.



# **Trip Spike**

A soil trip spike prepared by Envirolab Services Pty Ltd was transported to site unopened, subjected to the same storage methods as the field samples and analysed to determine the volatile organic recovery rates for BTEX to check whether any loss of contaminants occurred within the storage container. BTEX were chosen for analysis due to the volatility of these compounds.

The results of the laboratory analysis for the trip spike are shown in Table F3.

| Sample ID  | Matrix | Recovery (%) |         |              |            |          |  |  |  |
|------------|--------|--------------|---------|--------------|------------|----------|--|--|--|
|            |        | Benzene      | Toluene | Ethylbenzene | m+p xylene | o xylene |  |  |  |
| 28/05/2010 | Soil   | 91           | 93      | 91           | 92         | 91       |  |  |  |

Table F3 – Results of Trip Spike Analysis

The recovery rates indicate that the percentage loss of BTEX compounds was generally within an accepted range and that appropriate storage and handling techniques were employed.

# Rinsate

Two rinsate samples were collected to confirm that the decontamination procedures adopted during the field work were adequate for preventing cross-contamination during sampling. Both samples were collected by rinsing decontaminated sampling equipment with demineralised water. The analytes tested in the laboratory were below the laboratory detection limits indicating adequate sampling procedures were employed.

# **INTRA-LABORATORY QA/QC ANALYSIS**

Intra-laboratory analysis of duplicate samples was conducted as an internal check of the reproducibility of the results from Envirolab Services Pty Ltd and as a measure of consistency of sampling techniques. The results are compared within each duplicate pair to determine the relative percentage difference (RPD) between the samples.



The comparative results of the analysis of the replicate sample pairs are summarised in Tables F4 to F8.

| Sample ID | Total Concentrations (mg/kg) |                   |                                   |                                   |  |  |  |  |  |
|-----------|------------------------------|-------------------|-----------------------------------|-----------------------------------|--|--|--|--|--|
| Campie ib | $C_{6} - C_{9}$              | $C_{10} - C_{14}$ | C <sub>15</sub> – C <sub>28</sub> | C <sub>29</sub> – C <sub>36</sub> |  |  |  |  |  |
| BH6/1.0   | <25                          | <50               | <100                              | <100                              |  |  |  |  |  |
| Dup2      | <25                          | <50               | <100                              | <100                              |  |  |  |  |  |
| RPD       | 0%                           | 0%                | 0%                                | 0%                                |  |  |  |  |  |
| BH1/1.0   | <25                          | <50               | <100                              | <100                              |  |  |  |  |  |
| Dup4      | <25                          | <50               | <100                              | <100                              |  |  |  |  |  |
| RPD       | 0%                           | 0%                | 0%                                | 0%                                |  |  |  |  |  |

Table F4 – Intra-laboratory Results for TPH

Table F5 – Intra-laboratory Results for BTEX

| Sample ID |         | Total Concentrations (mg/kg) |              |            |          |  |  |  |  |  |
|-----------|---------|------------------------------|--------------|------------|----------|--|--|--|--|--|
| Campions  | Benzene | Toluene                      | Ethylbenzene | m+p xylene | o xylene |  |  |  |  |  |
| BH6/1.0   | <0.5    | <0.5                         | <1.0         | <2.0       | <1.0     |  |  |  |  |  |
| Dup2      | <0.5    | <0.5                         | <1.0         | <2.0       | <1.0     |  |  |  |  |  |
| RPD       | 0%      | 0%                           | 0%           | 0%         | 0%       |  |  |  |  |  |
| BH1/1.0   | <0.5    | <0.5                         | <1.0         | <2.0       | <1.0     |  |  |  |  |  |
| Dup4      | <0.5    | <0.5                         | <1.0         | <2.0       | <1.0     |  |  |  |  |  |
| RPD       | 0%      | 0%                           | 0%           | 0%         | 0%       |  |  |  |  |  |

Table F6 – Intra-laboratory Results for Total PAHs & Benzo(a)pyrene

| Sample ID | Total Concentrations (mg/kg) |                |  |  |  |  |  |
|-----------|------------------------------|----------------|--|--|--|--|--|
| Sample ID | Total PAHs                   | Benzo(a)pyrene |  |  |  |  |  |
| BH6/1.0   | 0.3                          | 0.06           |  |  |  |  |  |
| Dup2      | 0.7                          | 0.06           |  |  |  |  |  |
| RPD       | 80%                          | 0%             |  |  |  |  |  |
| BH1/1.0   | <0.2                         | <0.05          |  |  |  |  |  |
| Dup4      | <0.2                         | <0.05          |  |  |  |  |  |
| RPD       | 0%                           | 0%             |  |  |  |  |  |



| Sample ID | Total Concentrations (mg/kg) |      |      |        |  |  |  |  |  |
|-----------|------------------------------|------|------|--------|--|--|--|--|--|
| Campie ib | OCP                          | OPP  | PCB  | Phenol |  |  |  |  |  |
| BH6/1.0   | <0.1                         | <0.1 | <0.1 | <5.0   |  |  |  |  |  |
| Dup2      | <0.1                         | <0.1 | <0.1 | <5.0   |  |  |  |  |  |
| RPD       | 0%                           | 0%   | 0%   | 0%     |  |  |  |  |  |
| BH1/1.0   | <0.1                         | <0.1 | <0.1 | <5.0   |  |  |  |  |  |
| Dup4      | <0.1                         | <0.1 | <0.1 | <5.0   |  |  |  |  |  |
| RPD       | 0%                           | 0%   | 0%   | 0%     |  |  |  |  |  |

## Table F7 – Intra-laboratory Results for OCP, OPP, PCB and Phenol

Table F8 – Intra-laboratory Results for Heavy Metals

| Sample  |      | Total Concentrations (mg/kg) |    |     |     |       |     |     |  |  |
|---------|------|------------------------------|----|-----|-----|-------|-----|-----|--|--|
| ID      | As   | Cd                           | Cr | Cu  | Pb  | Hg    | Ni  | Zn  |  |  |
| BH6/1.0 | 5    | <0.5                         | 4  | 8   | 90  | 0.1   | 4   | 150 |  |  |
| Dup2    | 6    | <0.5                         | 4  | 10  | 67  | 1     | 4   | 150 |  |  |
| RPD     | 18%  | 0%                           | 0% | 22% | 29% | 164%  | 0%  | 0%  |  |  |
| BH1/1.0 | <4.0 | <0.5                         | 3  | 4   | 9   | <0.10 | 3   | 7   |  |  |
| Dup4    | <4.0 | <0.5                         | 3  | 3   | 7   | <0.10 | 2   | 6   |  |  |
| RPD     | 0%   | 0%                           | 0% | 29% | 25% | 0%    | 40% | 15% |  |  |

A RPD of  $\pm$  30% is generally considered acceptable for inorganic analytes and a wider range may be acceptable for organic analytes.

The RPD values outside the generally acceptable range of  $\pm$  30% are indicated by yellow shading in the tables. These values are not considered significant due to relatively low actual differences between the contaminant concentrations.

It is therefore considered that the results indicate acceptable consistency between duplicate samples pairs and that suitable field sampling methodology was adopted and adequate laboratory precision was achieved.



# LABORATORY QA/QC PROCEDURES

Quality control procedures used during analysis include:

#### Reagent Blank

A reagent blank sample is prepared and analysed at the beginning of every analytical run, following calibration of the analytical apparatus. The laboratory results for reagent blanks for soil analyses indicated that concentrations of all analytes were below respective laboratory practical quantitation limits.

#### Duplicate

This is the complete duplicate of a sample from the process batch. The results of the two samples are compared to laboratory acceptance criteria and exceedences highlighted. No exceedences were detected.

#### Matrix Spike

A portion of a sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and determine whether matrix interference exists. The matrix spike recovery is compared to laboratory acceptance criteria. No exceedences were noted.

#### Laboratory Control Sample

This is a standard reference sample or control matrix used to check the analytical process. The results were within acceptable limits.

### Surrogate Spike

Surrogates are known additions of known compounds to each sample, blank, matrix spike and laboratory control sample. The surrogates are similar to the analyte of interest, however are not expected to be detected in real samples. The results were acceptable.

# APPENDIX G Calibration Certificate for PID

PID - MiniRAE LIR SN/ 590 - 000221

|           |              | -     |              |
|-----------|--------------|-------|--------------|
| Pate      | Cal. Gras    | Conc. | Initials     |
| 25.06.09  | ISO Sutylene | /00/  | WEY          |
| 10 08.09  | I30 bylere   | (05   | WFY          |
| 10.09.09  | N            | 1 00. | WEG          |
| 27.09.07  | 61           | 100   | WEY          |
| 15.10.09  | 1            | 100   | wey          |
| 16.10.09  | 1            | 100.1 | WEY.         |
| 20.10.09  | <u>\\</u>    | 190   | WFY          |
| R9.11.09  | 1.1          | 100   | WITy         |
| 23-11-09  | 17           | 100   | SL           |
| 2-3.10    | 3.0          | 10-2  | $\mathbf{C}$ |
| 046.04.10 | Ť            | 102   | WT4          |
| 07.05.10  | ιι -         | 100   | i.JE-M       |
|           | 1.<br>       |       |              |
|           |              |       |              |
| -         |              |       |              |
|           |              |       |              |
|           |              |       |              |
|           |              |       |              |
|           |              |       |              |
|           |              |       | 20           |
|           |              |       |              |
|           |              |       |              |
|           |              |       |              |
|           |              |       |              |
|           |              |       |              |